World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Physics of Fluids : Weakly nonlinear stability analysis of a flow past a neo-Hookean solid at arbitrary Reynolds numbers

By Paresh Chokshi and V. Kumaran

Click here to view

Book Id: WPLBN0002169610
Format Type: PDF eBook :
File Size: Serial Publication
Reproduction Date: 29 September 2008

Title: Physics of Fluids : Weakly nonlinear stability analysis of a flow past a neo-Hookean solid at arbitrary Reynolds numbers  
Author: Paresh Chokshi and V. Kumaran
Volume: Issue : September 2008
Language: English
Subject: Science, Physics, Natural Science
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Physics of Fluids Collection
Historic
Publication Date:
Publisher: American Institute of Physics

Citation

APA MLA Chicago

And V. Kumara, P. C. (n.d.). Physics of Fluids : Weakly nonlinear stability analysis of a flow past a neo-Hookean solid at arbitrary Reynolds numbers. Retrieved from http://hawaiilibrary.net/


Description
Description: The finite amplitude stability of a plane Couette flow over a deformable solid medium is analyzed with emphasis on the class of high Reynolds number (Re) modes, referred to as the wall modes, for which the viscous stresses are confined to a thin layer adjacent to the fluid-solid interface with thickness O(Re−1/3) times the channel width in the limit Re⪢1. Here, the Reynolds number is defined in terms of the top plate velocity V and the channel width R. Previous linear stability analyses have shown that the wall modes are unstable for Newtonian flow past a linear viscoelastic solid. In the present study, the analysis is extended to examine the weakly nonlinear stability of these unstable wall modes in order to determine the nature of bifurcation of the transition point to finite amplitude states. To account for the finite strain deformations, the flexible solid medium is described by a neo-Hookean elastic model which is a generalization of the commonly used linear constitutive model. The linear stability analysis provides the critical shear rate Γc and the critical wavenumber in the axial direction αc, where the dimensionless shear rate is defined as Γ = , where ρ is the fluid density and G is the shear modulus of the elastic solid. The critical parameter Γc for the neo-Hookean solid is found to be close to Γc for the linear elastic solid analyzed in the previous studies. The first Landau constant s(1), which is the finite amplitude correction to the linear growth rate, is evaluated in the weakly nonlinear stability analysis using both the numerical technique and the high Re asymptotic analysis. The real part of the Landau constant, sr(1), is negative for the wall mode instability in the limit Re⪢1 for a wide range of dimensionless solid thickness H, indicating that there is a supercritical bifurcation of the wall mode instability. The amplitude of the supercritically bifurcated equilibrium state is derived in the vicinity of the critical point. The equilibrium amplitude, in the form A1e2/(Γ−Γc), is found to scale as Re−1/3 in the limit Re⪢1 and is proportional to H2.3 for H⪢1 in the same limit.

 

Click To View

Additional Books


  • Journal of Applied Physics : Magnetic le... Volume Issue : November 2008 (by )
  • Journal of Applied Physics : On PbTiO3-(... Volume Issue : November 2008 (by )
  • Biblioteca Hispanica : Natural and Moral... (by )
  • Journal of Applied Physics : Thermal pho... Volume Issue : November 2008 (by )
  • Journal of Applied Physics : Lattice con... Volume Issue : November 2008 (by )
  • Biblioteca Hispanica : Application of Na... (by )
  • Review of Scientific Instruments : Visua... Volume Issue : December 2008 (by )
  • Journal of Mathematical Physics : Nonlin... Volume Issue : October 2008 (by )
  • Applied Physics Letters : Plasmonic phot... Volume Issue : December 2008 (by )
  • Journal of Mathematical Physics : Lp-uni... Volume Issue : October 2008 (by )
  • Applied Physics Letters : Crystalline si... Volume Issue : December 2008 (by )
  • Applied Physics Letters : Absence of ela... Volume Issue : December 2008 (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.