World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Application of Concentration-volume Fractal Method in Induced Polarization and Resistivity Data Interpretation for Cu-mo Porphyry Deposits Exploration, Case Study: Nowchun Cu-mo Deposit, SE Iran : Volume 19, Issue 4 (13/08/2012)

By Daneshvar Saein, L.

Click here to view

Book Id: WPLBN0003973392
Format Type: PDF Article :
File Size: Pages 8
Reproduction Date: 2015

Title: Application of Concentration-volume Fractal Method in Induced Polarization and Resistivity Data Interpretation for Cu-mo Porphyry Deposits Exploration, Case Study: Nowchun Cu-mo Deposit, SE Iran : Volume 19, Issue 4 (13/08/2012)  
Author: Daneshvar Saein, L.
Volume: Vol. 19, Issue 4
Language: English
Subject: Science, Nonlinear, Processes
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Moarefvand, P., Omran, N. R., Rasa, I., Afzal, P., & Saein, L. D. (2012). Application of Concentration-volume Fractal Method in Induced Polarization and Resistivity Data Interpretation for Cu-mo Porphyry Deposits Exploration, Case Study: Nowchun Cu-mo Deposit, SE Iran : Volume 19, Issue 4 (13/08/2012). Retrieved from

Description: Department of Geology, Science and Research Branch, Islamic Azad University, Tehran, Iran. The aim of this study is the utilization of the concentration-volume (C-V) fractal method based on geoelectrical data including induced polarization (IP) and resistivity (RS) in targeting areas hosting different sulfidic mineralization zones in Nowchun Cu-Mo porphyry deposit, SE Iran. The C-V fractal model employed in this research in order to separate high and moderate sulfidic zones from low sulfidic zone and barren wall rocks in the deposit is corresponding to chargeability and resistivity. Results obtained from the C-V method indicate that there is a positive correlation between subsurface mineralization and sulfide mineralized zones; additionally, use of the C-V method based on geophysical data is recognized as an accurate approach for delineation of various mineralization zones in the depth for optimization of mineral exploration operation, particularly in porphyry deposits.

Application of concentration-volume fractal method in induced polarization and resistivity data interpretation for Cu-Mo porphyry deposits exploration, case study: Nowchun Cu-Mo deposit, SE Iran

Dines, K. A. and Lytle, R. J.: Computerized geophysical tomography, Proceedings IEEE, 67, 1065–1073, 1979.; Afzal, P., Khakzad, A., Moarefvand, P., Rashidnejad Omran, N., Esfandiari, B., and Fadakar Alghalandis, Y.: Geochemical anomaly separation by multifractal modeling in Kahang (Gor Gor) porphyry system, Central Iran, J. Geochem. Explor., 104, 34–46, 2010.; Afzal, P., Fadakar Alghalandis, Y., Khakzad, A., Moarefvand, P., and Rashidnejad Omran, N.: Delineation of mineralization zones in porphyry Cu deposits by fractal concentration–volume modeling, J. Geochem. Explor., 108, 220–232, 2011.; Alavi, M.: Tectonics of Zagros Orogenic belt of Iran, new data and interpretation, Tectonophysics, 229, 211–238, 1994.; Alavi, M.: Regional stratigraphy of the Zagros folded-thrust belt of Iran and its proforeland evolution, Am. J. Sci., 304, 1–20, 2004.; Barton, C. C. and La Pointe, P. R.: Fractals in the earth sciences, Plenum Press, New York, 265 pp., 1995.; Atapour, H. and Aftabi, A.: The geochemistry of gossans associated with Sarcheshmeh porphyry copper deposit, Rafsanjan, Kerman, Iran: Implications for exploration and the environment, J. Geochem. Explor., 93, 47–65, 2007.; Berger, B. R., Ayuso, R. A., Wynn, J. C., and Seal, R. R.: Preliminary Model of Porphyry Copper Deposits, USGS, Open-File Report, 1321 pp., 2008.; BEOGRAD-Yugoslavia: Explorations for copper in Nowchon area institute Geological and mining exploration, National Iranian Copper Industries Co. (NICICO), 286 pp., 1972.; Berberian, M. and King, G. C.: Towards a paleogeography and tectonic evolution of Iran, Can. J. Eart Sci., 18, 210–265, 1981.; Boomeri, M., Nakashima, K., and Lentz, D. R.: The Miduk porphyry Cu deposit, Kerman, Iran: A geochemical analysis of the potassic zone including halogen element systematics related to Cu mineralization processes, J. Geochem. Explor., 103, 17–19, 2009.; Carranza, E. J. M.: Controls on mineral deposit occurrence inferred from analysis of their spatial pattern and spatial association with geological features, Ore Geol. Rev., 35, 383–400, 2009.; Cox, D. and Singer, D.: Mineral deposits models, US Geological Survey Bulletin, 1693 pp., 1986.; Dargahi, S., Arvin, M., Pan, Y, and Babaei, A.: Petrogenesis of Post-Collisional A-type granitoid from the Urumieh-Dokhtar magmatic assemblage, Southwestern Kerman, Iran: Constraints on the Arabian-Eurasian continental collision, Lithos, 115, 190–204, 2010.; Daya Sagar, B. S., Rangarajan, G., and Veneziano, D.: Fractals in Geophysics, Chaos, Solitons Fractals, 19, 237–239, 2004.; David, M.: Geostatistical Ore Reserve Estimation, Amsterdam, Elsevier, 283 pp., 1970.; Dimri, V. P.: Application of fractals in earth science. AA Balkema, USA and Oxford IBH Publishing Co, New Delhi, 238 pp., 2000.; Dimri, V. P.: Fractal Behavior of the Earth System, Springer, 208 pp., 2005.; Fink, J. B., McAlister, E. O., Sternberg, B. K., Wieduwilt, W. G., and Ward, S. H.: Induced polarization, applications and case histories. Investigations in Geophysics, Society of Exploration Geophysicists, vol. 4., 414 pp., 1990.; Flores, C. and Peralta-Ortega, S. A.: Induced polarization with in-loop transient electromagnetic soundings: A case study of mineral discrimination at El Arco porphyry copper, Mexico, J. Appl. Geophys., 68, 423–436, 2009.; Goncalves, M. A., Mateus, A., and Oliveira, V.: Geochemical anomaly separation by multifractal modeling, J. Geochem. Explor., 72, 91–114, 2001.; Hordt, A., Hanstein, T., Honig, M., and Neubauer, F. M.: Efficient spectral IP-modelling in the time domain, J. Appl. Geophys., 59, 152–161, 2006.; Korvin, G.: Fractal Models in the Earth Science, Elsevier, Amsterdam, 396 pp., 1992.; Khesin, B. E., Alexeyev, V. V., and Eppelbaum, L. V.: Investigation of geophysical fields in pyrite deposits under mountainous conditions, J. Appl. Geophys., 30, 187–204, 1993.; Laznicka, P.: Giant metallic deposits–Future Sources of Industrial Metals, Springer, 732 pp., 2006.; Malamud, B. D. and Turcotte


Click To View

Additional Books

  • Gottwald Melborune (0–1) Test for Chaos ... (by )
  • Turning the Resistive Mhd Into a Stochas... (by )
  • Soil Nutrient Cycles as a Nonlinear Dyna... (by )
  • Preface : Volume 9, Issue 5/6 (30/11/-00... 
  • Models of Explosive Volcanism : Volume 2... (by )
  • Size Distribution and Structure of Barch... (by )
  • Nonlinear Compressional Electromagnetic ... (by )
  • Enso Dynamics in Current Climate Models:... (by )
  • Fractional Fourier Approximations for Po... (by )
  • Multifractal Analysis of Mercury Inclusi... (by )
  • Reduction of Dietrich-ruina Attractors t... (by )
  • Artificial Neural Networks and Multiple ... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.