World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Predictability of Extreme Values in Geophysical Models : Volume 19, Issue 5 (17/09/2012)

By Sterk, A. E.

Click here to view

Book Id: WPLBN0003973775
Format Type: PDF Article :
File Size: Pages 11
Reproduction Date: 2015

Title: Predictability of Extreme Values in Geophysical Models : Volume 19, Issue 5 (17/09/2012)  
Author: Sterk, A. E.
Volume: Vol. 19, Issue 5
Language: English
Subject: Science, Nonlinear, Processes
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Historic
Publication Date:
2012
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Rabassa, P., Broer, H. W., Holland, M. P., Sterk, A. E., & Vitolo, R. (2012). Predictability of Extreme Values in Geophysical Models : Volume 19, Issue 5 (17/09/2012). Retrieved from http://hawaiilibrary.net/


Description
Description: College of Engineering, Mathematics and Physical Sciences, Harrison Building, Streatham Campus, University of Exeter, North Park Road, Exeter, EX4 4QF, UK. Extreme value theory in deterministic systems is concerned with unlikely large (or small) values of an observable evaluated along evolutions of the system. In this paper we study the finite-time predictability of extreme values, such as convection, energy, and wind speeds, in three geophysical models. We study whether finite-time Lyapunov exponents are larger or smaller for initial conditions leading to extremes. General statements on whether extreme values are better or less predictable are not possible: the predictability of extreme values depends on the observable, the attractor of the system, and the prediction lead time.

Summary
Predictability of extreme values in geophysical models

Excerpt
Abarbanel, H., Brown, R., and Kennel, M.: Variation of {L}yapunov Exponents on a Strange Attractor, J. Nonlin. Sci., 1, 175–199, 1991.; Bailey, B., Ellner, S., and Nychka, D.: Chaos with confidence: asymptotics and applications of local {L}yapunov exponents, Fields Institute Communications, 11, 115–133, 1997.; Beirlant, J., Goegebeur, Y., Teugels, J., and Segers, J.: Statistics of Extremes: Theory and Applications, John Wiley and Sons, Berlin, 2004.; Bowler, N., Arribas, A., Mylne, K., Robertson, K., and Beare, S.: The MOGREPS short-range ensemble prediction system, Q. J. Roy. Meteorol. Soc., 134, 703–722, 2008.; Broer, H. and Takens, F.: Dynamical Systems and Chaos, 172, Appl. Math. Sci., Springer, 2011.; Broer, H. and Vegter, G.: Subordinate Šil'nikov bifurcations near some singularities of vector fields having low codimension, Ergodic Theor. Dynam. Syst., 4, 509–525, 1984.; Broer, H. and Vitolo, R.: Dynamical systems modelling of low-frequency variability in low-order atmospheric models, Discrete and Continuous Dynamical Systems B, 10, 401–419, 2008.; Buizza, R. and Palmer, T.: The singular-vector structure of the atmospheric global circulation, J. Atmos. Sci., 52, 1434–1456, 1995.; Charney, J. and DeVore, J.: Multiple Flow Equilibria in the Atmosphere and Blocking, J. Atmos. Sci., 36, 1205–1216, 1979.; Coles, S.: An Introduction to Statistical Modeling of Extreme Values, Springer Series in Statistics, Springer, New York, 2001.; Crommelin, D. and Vanden-Eijnden, E.: Subgrid scale parameterization with conditional {M}arkov chains, J. Atmos. Sci., 65, 2661–2675, 2008.; Crommelin, D., Opsteegh, J., and Verhulst, F.: A Mechanism for Atmospheric Regime Behavior, J. Atmos. Sci., 61, 1406–1419, 2004.; Datta, S. and Ramaswamy, R.: Non-{G}aussian fluctuations of local {L}yapunov exponents at intermittency, J. Stat. Phys., 113, 283–295, 2003.; De Swart, H.: Low-Order Spectral Models of the Atmospheric Circulation: A Survey, Acta Applicandae Mathematicae, 11, 49–96, 1988.; De Swart, H.: Analysis of a six-component atmospheric spectral model: chaos, predictability and vacillation, Physica D, 36, 222–234, 1989.; Felici, M., Lucarini, V., Speranza, A., and Vitolo, R.: Extreme Value Statistics of the Total Energy in an Intermediate-Complexity Model of the Midlatitude Atmospheric Jet. P}art {I}: Stationary Case, J. Atmos. Sci., 64, 2137–2158, 2007{a.; Lorenz, E.: Deterministic nonperiodic flow, J. Atmos. Sci., 20, 130–141, 1963.; Ziehmann, C., Smith, L., and Kurths, J.: Localized {L}yapunov exponents and the prediction of predictability, Phys. Lett. A, 271, 237–251, 2000.; Felici, M., Lucarini, V., Speranza, A., and Vitolo, R.: Extreme Value Statistics of the Total Energy in an Intermediate-Complexity Model of the Midlatitude Atmospheric Jet. P}art {II}: Trend Detection and Assessment, J. Atmos. Sci., 64, 2159–2175, 2007{b.; Freitas, A. and Freitas, J.: On the link between dependence and independence in extreme value theory for dynamical systems, Stat. Probab. Lett., 78, 1088–1093, 2008.; Freitas, A., Freitas, J., and Todd, M.: Extreme Value Laws in Dynamical Systems for Non-smooth Observations, J. Stat. Phys., 142, 108–126, 2010.; Gupta, C.: Extreme-value distributions for some classes of non-uniformly partially hyperbolic dynamical systems, Ergodic Theor. Dynam. Syst., 30, 757–771, 2010.; Haiman, G.: Extreme values of the tent map process, Stat. Probab. Lett., 65, 451–456, 2003.; Harle, M., Kwasniok, F., and Feudel, U.: Growth of finite errors in ensemble prediction, Nonlin. Processes Geophys., 13, 167–176, doi:10.5194/npg-13-167-2006, 2006.; Holland, M., Nicol, M., and T{ö}r{ö}k, A.: Extreme value theory for non-uniformly expanding dynamical systems, T. Am. Math. Soc., 364, 661–688, 2012{a}.; Holland, M., Vitolo, R., Rabassa, P., Sterk, A., and Broer, H.: Extreme value laws in dynamical systems under physical observables, Physica D, 241, 497–513, 2012{b}.; Lai, Y.-C.: Ex

 

Click To View

Additional Books


  • Gyrostatic Extensions of the Howard-kris... (by )
  • A Viscoelastic Rivlin-ericksen Material ... (by )
  • A Typical Wave Wake from High-speed Vess... (by )
  • Width Dependent Collisionless Electron D... (by )
  • Multifractal Structure of the Large-scal... (by )
  • Four-dimensional Ensemble-variational Da... (by )
  • Baroclinic Instability of a Symmetric, R... (by )
  • Wavelet Analysis in a Structured Clay So... (by )
  • Energetics of Internal Solitary Waves in... (by )
  • Space-time Evolution of Electron-beam Dr... (by )
  • On the Generation of Solitary Waves Obse... (by )
  • Asymmetry of Wind Waves Studied in a Lab... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.