World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

The Hydrological Response of Baseflow in Fractured Mountain Areas : Volume 6, Issue 2 (22/04/2009)

By Millares, A.

Click here to view

Book Id: WPLBN0003974171
Format Type: PDF Article :
File Size: Pages 26
Reproduction Date: 2015

Title: The Hydrological Response of Baseflow in Fractured Mountain Areas : Volume 6, Issue 2 (22/04/2009)  
Author: Millares, A.
Volume: Vol. 6, Issue 2
Language: English
Subject: Science, Hydrology, Earth
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Losada, M. A., Millares, A., & Polo, M. J. (2009). The Hydrological Response of Baseflow in Fractured Mountain Areas : Volume 6, Issue 2 (22/04/2009). Retrieved from

Description: Environmental Fluid Dynamic Group, Andalusian Centre for Environmental Studies (CEAMA), Avda. del Mediterráneo s/n, 18006, Granada, Spain. The study of baseflow in mountainous areas of basin headwaters, where the characteristics of the often fractured materials are very different to the standard issues concerning porous material applied in conventional hydrogeology, is an essential element in the characterization and quantification of water system resources. Their analysis through recession fragments provides information on the type of response of the sub-surface and subterranean systems and on the average relation between the storage and discharge of aquifers, starting from the joining of these fragments into a single curve, the Master Recession Curve (MRC). This paper presents the generation of the downward MRC over fragments selected after a preliminary analysis of the recession curves, using a hydrological model as the methodology for the identification and the characterization of quick sub-surface flows flowing through fractured materials. The hydrological calculation has identified recession fragments through surface runoff or snowmelt and those periods of intense evapotranspiration. The proposed methodology has been applied to three sub-basins belonging to a high altitude mountain basin in the Mediterranean area, with snow present every year, and their results were compared with those for the upward concatenation of the recession fragments. The results show the existence of two different responses, one quick (at the sub-surface, through the fractured material) and the other slow, with linear behavior which takes place in periods of 10 and 17 days, respectively and which is linked to the dimensions of the sub-basin. In addition, recesses belonging to the dry season have been selected in order to compare and validate the results corresponding to the study of recession fragments. The comparison, using these two methodologies, which differ in the time period selected, has allowed us to validate the results obtained for the slow flow.

The hydrological response of baseflow in fractured mountain areas

Aguilar, C.: Efectos de escala en procesos hidrológicos, Aplicación a la cuenca del río Guadalfeo, M. S. in Hydrology, University of Cordoba, 40–42, online available at: 2006.; Bako, M. D. and Hunt D. N.: Derivation of baseflow recession constant using computer and numerical analysis. Hydrol. Sci. J., 33(4), 357–367, 1988.; Castillo, A., Cruz, J. J., and Benavente, J.: Aguas de Sierra Nevada; Aguas de Lanjarón. Lanjarón: paisajes del agua, Balneario de Lanjarón, SA Granada, 35–64, 1999.; Chapman, T. G.: Modeling stream recession flows, Environ. Modell. Softw., 18, 683–692, 2002.; Castillo, A. and Fideli, B.: Algunas pautas del comportamiento hidrogeológico de rocas duras afectadas por glaciarismo y periglaciarismo en Sierra Nevada (España), Geogaceta, 32, 189–191, 2002.; Chapman, T. G. and Maxwell, A.: Baseflow separation, Comparison of numerical methods with tracer experiments, Proceedings of the 23rd Hydrology and Water Resources Symposium, 539–545, 1996.; Coutagne, A.: Etude générale des variations de débits en fonction des fractures qui les conditionnent. 2ème partie: Les variations de débits en période non influencée par les précipitations, La Houille Blanche, 3, 416–436, 1948.; Demuth, S.: Research basin studies, in: Flow Regimes from Experimental and Network Data (FREND), Institute of Hydrology, Wallingford, UK, 141–185, 1989.; Fenicia, F., Savenije, H. H. G., Matgen, P., and Pfister L.: Is the groundwater reservoir linear? Learning from data in hydrological modeling, Hydrol. Earth Syst. Sc., 10, 139–150, 2006.; Hall, F. R.: Baseflow recessions, a review, Water Resour. Res., 4(5), 973–983, 1968.; Hamad, O. E.: Optimal operation of a reservoir system during a dry season, PhD thesis, University of Newcastle upon Tyne, 1, 227 pp., 1993.; Hammond, H.: Recession curve estimation for storm event separations, J. Hydrol., 330, 573–585, 2006.; Herrero, J.: Modelo físico de acumulación y fusión de la nieve, Aplicación en Sierra Nevada (España), PhD thesis, University of Granada, online available at:, 2007.; Herrero, J., Polo, M. J., Moñino, A., and Losada, M. A.: An energy balance snowmelt model in a Mediterranean site, J. Hydrol., doi:10.1016/j.jhydrol.2009.03.021, accepted, 2009.; Hewlett, J. D.: Soil moisture as a source of baseflow from steep mountain watersheds, US For. Serv. Southeast. For. Exp. Stn., 132, USA, 1961.; Lamb, R. and Beven, K.: Using interactive recession curve analysis to specify a general catchment storage model, Hydrol. Earth Syst. Sci., 1, 101–113, 1997.; Linsley, R. K, Kohler, M. A., and Paulhus, J. L. H.: Hydrology for Engineers, McGraw-Hill, New York, USA, 1958.; Millares, A.: Integración del caudal base en un modelo distribuido de cuenca, Estudio de las aportaciones subterráneas en ríos de montaña, PhD thesis, University of Granada, Spain, 2008.; Millares, A., Aguilar, C., Herrero, J., Ávila, A., Moñino, A., Nieto, S., Vega, C., Polo, M. J., and Losada, M. A.: Proyecto Guadalfeo; Modelo de gestión Integral de Cuencas Mediterráneas, INTERREG IV MEDOCC, Agencia Andaluza del Agua, edited by: Polo, M. J. and Losada, M. A., online available at:, 2008.; Smakhtin, V. Y.: Low flow hydrology: a review, J. Hydrol., 240, 147–186, 2001.; Tallaksen, L. M.: Analysis of time variability in recessions, IAHS Publ., 187, 85–96, 1989.; Tallaksen, L. M.: A review of baseflow recession analysis, J. Hydrol., 165, 349–370, 1995.; Tóth, J.: A conceptual model of the groundwater regime and the hydrogeologic environment, J. Hydrol., 10, 164–176, 1970.; Wittenberg, H.: Baseflow recession and recharge as nonlinear storage processes, Hydrol. Process., Sp


Click To View

Additional Books

  • A Framework for Global River Flood Risk ... (by )
  • Corrigendum to Thermal Damping and Retar... (by )
  • Coupled Prediction of Flood Response and... (by )
  • Quantitative Historical Hydrology in Eur... (by )
  • Implementing Small Scale Processes at th... (by )
  • Possibilistic Uncertainty Analysis of a ... (by )
  • Modeling Insights from Distributed Tempe... (by )
  • Exploiting the Information Content of Hy... (by )
  • Estimating Degree Day Factors from Modis... (by )
  • Effects of Snow Ratio on Annual Runoff W... (by )
  • The Role of Olive Trees in Rainfall Eros... (by )
  • Impacts of Climate and Catastrophic Fore... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.