World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Excitation of Low Frequency Oscillations in a Planetary Magnetosheath by Supersonic Shear Flow : Volume 18, Issue 2 (21/03/2011)

By Borisov, N.

Click here to view

Book Id: WPLBN0003975003
Format Type: PDF Article :
File Size: Pages 13
Reproduction Date: 2015

Title: Excitation of Low Frequency Oscillations in a Planetary Magnetosheath by Supersonic Shear Flow : Volume 18, Issue 2 (21/03/2011)  
Author: Borisov, N.
Volume: Vol. 18, Issue 2
Language: English
Subject: Science, Nonlinear, Processes
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Historic
Publication Date:
2011
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Borisov, N., & Fränz, M. (2011). Excitation of Low Frequency Oscillations in a Planetary Magnetosheath by Supersonic Shear Flow : Volume 18, Issue 2 (21/03/2011). Retrieved from http://hawaiilibrary.net/


Description
Description: Institute of Terrestrial Magnetism, Ionosphere and Radio Waves Propagation, (IZMIRAN), 142190 Troitsk, Moscow region, Russia. We show that the slow magnetosonic (SM) perturbations generated in the vicinity of the magnetopause, due to the excitation of the Kelvin-Helmholtz (K.-H.) instability in the case of a supersonic flow velocity, are transformed into fast magnetosonic (FM) waves which can propagate into the magnetosheath. Under the conditions discussed in this paper, the FM wave has negative energy in the stationary (magnetospheric) coordinate frame. Due to this the outgoing FM wave increases the growth rate of the K.-H. instability excited at the magnetopause. Within the linear theory, we investigate the influence of the excited FM wave on the growth rate of the K.-H. instability. Simultaneously we predict the transformation of the SM mode into kinetic Alfvén (KA) mode. Thus, in general, two types of waves with different polarizations (the KA wave and the FM wave) should appear in the magnetosheath due to the excitation of the K.-H. instability. At the same time, the SM perturbations are only present in the localized region where the K.-H. instability is excited. To correctly describe the excitation of waves, we use two-fluid (for electrons and ions) magnetohydrodynamics. This approach is more general than the ideal magnetohydrodynamics and allows us to take into account the effects associated with the finite Larmor radius of ions. Also it can be used to investigate the K.-H. instability in a multi-component plasma, or in the case where the frequency of perturbations is of the order of the gyrofrequency of oxygen ions which may occur, for example, at the magnetosheath of Mars.

Summary
Excitation of low frequency oscillations in a planetary magnetosheath by supersonic shear flow

Excerpt
Anderson, B. J. and Fuselier, S. A.: Magnetic pulsations from 0.1 Hz to 4.0 Hz and associated plasma properties in the Earth's subsolar magnetosheath and plasma depletion layer, J. Geophys. Res., 98, 1461–1479, 1993.; Biernat, H. K., Erkaev, N. V., Amerstofer U. V., Penz, T., and Lichtenegger, H. I. M.: Solar wind flow past Venus and its applications for the occurrence of the Kelvin-Helmholtz instability, Planet. Space Sci., 55, 1793–1803, 2007.; Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability, Oxford University Press, Oxford, 1961.; Choudhury, S. R. and Lovelace, R. V. E.: On the Kelvin-Helmholtz instabilities of supersonic shear flow, Astrophys. J., 283, 331–342, 1984.; Dobrowolny, M.: Kelvin-Helmholtz instability in high β collisionless plasma, Phys. Fluids, 15, 2263–2270, 1972.; Dobrowolny, M.: Velocity shear instability of Alfvén waves in a high β collisionless plasma, Phys. Fluids, 20, 1027–1028, 1977.; Espley, J. R., Cloutier, P. A., Crider, D. H., Brain, D. A., and Akuña, M. H.: Low-frequency plasma oscillations at Mars during the October solar storm, J. Geophys. Res., 110, 25, doi:10.1029/2004JA010935, 2005.; Freeman, M. P. and Southwood, D. J.: The correlation of variations in the IMF with magnetosheath field variations, Adv. Space Res., 8, 217–220, 1988.; Fujimoto, M., Nakamura, T. K. M., and Hasegawa, T.: Cross-scale coupling within rolled-up MHD-scale vortices and its effect on large-scale plasma mixing across the magnetospheric boundary, Space Sci. Rev., 122, 3–18, 2006.; Omidi, N., Farrel, A. O., and Krauss-Varban, D.: Sources of magnetosheath waves and turbulence, Adv. Space Res., 14, 45–54, 1994.; Fujita, S., Glassmeier, K.-H., and Kamide, K.: MHD waves generated by the Kelvin-Helmholtz instability in a nonuniform magnetosphere, J. Geophys. Res., 101, 27317–27325, 1996.; Glassmeier, K.-H.: ULF pulsations, in: Handbook of Atmospheric Electrodynamics, part 2, edited by: Volland, H., CRC Press, Boca raton. Fla., pp. 463–502, 1995.; Gunell, H., Amerstorfer, U. V., Nilson, H., Grima, C., Koepke, M., Fränz, M., Winnigham, J. D., Frahm, R.A., Sauvaud, J.-A., Fedorov, A., Erkaev, N. V., Biernat, H. K., Holmström, M., Lundin, R., and Barabash, S.: Shear driven waves in the induced magnetosphere of Mars, Plasma Phys. Controlled Fusion, 50, 074018, doi:10.1088/0741-3335/50/7/074018, 2008.; Hasegawa, A. and Chen, L.: Kinetic processes in plasma heating by resonant mode conversion of Alfvén wave, Phys. Fluids, 19, 1924–1934, 1976.; Hasegawa, H., Fujimoto, M., Phan, T.-D., Réme, H., Balogh, A., Dunlop, M. W., Hashimoto, C., and TanDokoro, R.: Transport of solar wind into Earth's magnetosphere through rolled up Kelvin–Helmholtz vortices, Nature, 430, 755–758, 2004a.; Hasegawa, H., Fujimoto, M., Saito, Y., and Mukai, T: Dense and stagnant ions in the low-latitude boundary region under northward interplanetary magnetic field, Geophys. Res. Lett., 31, L06802, doi:10.1029/2003GL019120, 2004b.; Hasegawa, T., Fujimoto, M., Takagi, K., Saito, Y., Mukai, T., and Réme, H.: Single-spacecraft detection of rolled up Kelvin-Helmholtz vortices at the flank magnetosphere, J. Geophys. Res., 111, A09203, doi:10.1029/2006JA011728, 2006.; Hasegawa, T., Retinó, A., Vainads, A., Khotyaintsev, Y., André, M., Nakamura, T. K. M., Teh., W.-L., Sonnerup, B. U. Ö., Schwartz, S. T., Seki, Y., Fujimoto, M., Saito, Y., Réme, H., and Canu, P.: Kelvin-Helholtz waves at the Earth's magnetopause: Multiscale development and associated reconnection, J. Geophys. Res., 114, A12207, doi:10.1029/2009JA014042, 2009.; Kamke, E.: Differentialgleichungen. Lösungsmethoden und Lösungen. I. Gewönliche Differentialgleichungen, 6th edt.

 

Click To View

Additional Books


  • Long Waves Over a Bi-viscous Seabed: Tra... (by )
  • Bifurcations and Instabilities in Rotati... (by )
  • Implicit Particle Filtering for Models w... (by )
  • Breeding and Predictability in the Baroc... (by )
  • Numerical Simulations of the Charging of... (by )
  • Complexity and Predictability of Daily P... (by )
  • Scaling Properties of Planetary Calderas... (by )
  • Whistler Oscillitons Revisited: the Role... (by )
  • Self-organized Criticality: Does it Have... (by )
  • Ensemble Kalman Filtering Without the In... (by )
  • An Improved Arima Model for Hydrological... (by )
  • Combining 2-m Temperature Nowcasting and... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.