World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Embedding Reconstruction Methodology for Short Time Series – Application to Large El Niño Events : Volume 17, Issue 6 (14/12/2010)

By Astudillo, H. F.

Click here to view

Book Id: WPLBN0003976227
Format Type: PDF Article :
File Size: Pages 12
Reproduction Date: 2015

Title: Embedding Reconstruction Methodology for Short Time Series – Application to Large El Niño Events : Volume 17, Issue 6 (14/12/2010)  
Author: Astudillo, H. F.
Volume: Vol. 17, Issue 6
Language: English
Subject: Science, Nonlinear, Processes
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Historic
Publication Date:
2010
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Borotto, F. A., Abarca-Del-Rio, R., & Astudillo, H. F. (2010). Embedding Reconstruction Methodology for Short Time Series – Application to Large El Niño Events : Volume 17, Issue 6 (14/12/2010). Retrieved from http://hawaiilibrary.net/


Description
Description: Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción, Chile. We propose an alternative approach for the embedding space reconstruction method for short time series. An m-dimensional embedding space is reconstructed with a set of time delays including the relevant time scales characterizing the dynamical properties of the system. By using a maximal predictability criterion a d-dimensional subspace is selected with its associated set of time delays, in which a local nonlinear blind forecasting prediction performs the best reconstruction of a particular event of a time series. An locally unfolded d-dimensional embedding space is then obtained. The efficiency of the methodology, which is mathematically consistent with the fundamental definitions of the local nonlinear long time-scale predictability, was tested with a chaotic time series of the Lorenz system. When applied to the Southern Oscillation Index (SOI) (observational data associated with the El Niño-Southern Oscillation phenomena (ENSO)) an optimal set of embedding parameters exists, that allows constructing the main characteristics of the El Niño 1982–1983 and 1997–1998 events, directly from measurements up to 3 to 4 years in advance.

Summary
Embedding reconstruction methodology for short time series – application to large El Niño events

Excerpt
Abarbanel, H. D. I., Brown, R., Sidorowich, J. J., and Tsimring, L. S.: The analysis of observed chaotic data in physical systems, Rev. Mod. Phys., 65, 1331–1392, doi:10.1103/RevModPhys.65.1331, 1993.; Alparslan, A. K., Sayar, M., and Atilgan, A. R.: State-space prediction model for chaotic time series, Phys. Rev. E, 58, 2640–2643, doi:10.1103/PhysRevE.58.2640, 1998.; Casdagli, M., Eubank, S., Farmer, J., and Gibson, J.: State space reconstruction in the presence of noise, Physica D: Nonlinear Phenomena, 51, 52–98, doi:10.1016/0167-2789(91)90222-U, 1991.; Cellucci, C. J., Albano, A. M., and Rapp, P. E.: Comparative study of embedding methods, Phys. Rev. E, 67, 066210, doi:10.1103/PhysRevE.67.066210, 2003.; Chen, D., Cane, M. A., Kaplan, A., Zebiak, S. E., and Huang, D.: Predictability of El Niño Over the Past 148 Years, Nature, 428, 733–736, 2004.; Datta, S. and Ramaswamy, R.: Non-Gaussian Fluctuations of Local Lyapunov Exponents at Intermittency, J. Stat. Phys., 113, 283–295, http://dx.doi.org/10.1023/A:1025783023529, doi:10.1023/A:1025783023529, 2003.; Ding, R. and Li, J.: Nonlinear finite-time Lyapunov exponent and predictability, Phys. Lett. A, 364, 396–400, doi:10.1016/j.physleta.2006.11.094, http://www.sciencedirect.com/science/article/B6TVM-4MK0XX4-8/2/3d36adc6b74436d5b785abf0e34c9a25, 2007.; Ding, R., Li, J., and Ha, K.-J.: Nonlinear local Lyapunov exponent and the quantification of local predictability, Chinese Phys. Lett., 25, 1919–1922, 2008.; Farmer, J. D. and Sidorowich, J. J.: Predicting chaotic time series, Phys. Rev. Lett., 59, 845–848, doi:10.1103/PhysRevLett.59.845, 1987.; Fedorov, A., Harper, S., Philander, S., Winter, B., and Wittenberg, A.: How Predictable is El Niño?, B. Am. Meteorol. Soc., 84, 911–919, doi:10.1175/BAMS-84-7-911, 2003.; Garcia, S. P. and Almeida, J. S.: Nearest neighbor embedding with different time delays, Phys. Rev. E, 71, 037204, doi:10.1103/PhysRevE.71.037204, 2005.; Glantz, M.: Currents of change: impacts of El Ni{ñ}o and La Ni{ñ}a on climate and society, Cambridge Univ Pr, 133-145, 2001.; Izumo, T., Vialard, J., Lengaigne, M., de Boyer Montegut, C., Behera, S. K., Luo, J.-J., Cravatte, S., Masson, S., and Yamagata, T.: Influence of the state of the Indian Ocean Dipole on the following year's El Nino, Nature Geosci, 3, 168–172, doi:10.1038/ngeo760, http://www.nature.com/ngeo/journal/v3/n3/suppinfo/ngeo760_S1.%html, 2010.; Philander, S.: El Niño, La Niña, and the Southern Oscillation., Academic Press, San Diego, 1990.; Judd, K. and Mees, A.: Embedding as a modeling problem, Physica D: Nonlinear Phenomena, 120, 273–286, doi:10.1016/S0167-2789(98)00089-X, http://www.sciencedirect.com/science/article/B6TVK-497C6J4-2/2/1e402f4664612191cadb30e64ef9343a, 1998.; Kantz, H. and Schrei

 

Click To View

Additional Books


  • Modeling Pairwise Dependencies in Precip... (by )
  • Maximal Lyapunov Exponent Variations of ... (by )
  • Brief Communication on One Mechanism of ... (by )
  • Evolutionary Modeling-based Approach for... (by )
  • Inversion of 2-d Dc Resistivity Data Usi... (by )
  • Multiple-scale Error Growth in a Convect... (by )
  • Combining Inflation-free and Iterative E... (by )
  • The Cosmo-leps Mesoscale Ensemble System... (by )
  • Comments and New Results About the Magne... (by )
  • Comparison Between Local Ensemble Transf... (by )
  • Simulation of the Long-term Behaviour of... (by )
  • The Predictability of Large-scale Wind-d... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.