World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Solar Wind Interaction with the Earth's Magnetosphere: the Role of Reconnection in the Presence of a Large Scale Sheared Flow : Volume 16, Issue 1 (16/01/2009)

By Califano, F.

Click here to view

Book Id: WPLBN0003976620
Format Type: PDF Article :
File Size: Pages 10
Reproduction Date: 2015

Title: Solar Wind Interaction with the Earth's Magnetosphere: the Role of Reconnection in the Presence of a Large Scale Sheared Flow : Volume 16, Issue 1 (16/01/2009)  
Author: Califano, F.
Volume: Vol. 16, Issue 1
Language: English
Subject: Science, Nonlinear, Processes
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Historic
Publication Date:
2009
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Valentini, F., Faganello, M., Pegoraro, F., & Califano, F. (2009). Solar Wind Interaction with the Earth's Magnetosphere: the Role of Reconnection in the Presence of a Large Scale Sheared Flow : Volume 16, Issue 1 (16/01/2009). Retrieved from http://hawaiilibrary.net/


Description
Description: Physics Dept., University of Pisa, Pisa, Italy. The Earth's magnetosphere and solar wind environment is a laboratory of excellence for the study of the physics of collisionless magnetic reconnection. At low latitude magnetopause, magnetic reconnection develops as a secondary instability due to the stretching of magnetic field lines advected by large scale Kelvin-Helmholtz vortices. In particular, reconnection takes place in the sheared magnetic layer that forms between adjacent vortices during vortex pairing. The process generates magnetic islands with typical size of the order of the ion inertial length, much smaller than the MHD scale of the vortices and much larger than the electron inertial length. The process of reconnection and island formation sets up spontaneously, without any need for special boundary conditions or initial conditions, and independently of the initial in-plane magnetic field topology, whether homogeneous or sheared.

Summary
Solar wind interaction with the Earth's magnetosphere: the role of reconnection in the presence of a large scale sheared flow

Excerpt
Attico, N., Califano, F., and Pegoraro, F.: Fast collisionless reconnection in the whistler frequency range, Phys. Plasmas, 7, 2381–2387, doi:10.1063/1.874076, 2000.; Bian, N. and Vekstein, G.: On the two-fuid modification of the resistive tearing instability, Phys. Plasmas, 14, 120702, doi:10.1063/1.2820904, 2007.; Belmont, G. and Chanteur, G.: Kelvin-Helmholtz instability: nonlinear evolution, in: Turbulence and Nonlinear Dynamics in MHD Flows, edited by: Meneguzzi, M., Pouquet, A., and Sulem, P., Elsevier Science Publishers (North Holland), 1989.; Chen, L., Bhattacharjee, A., Puhl-Quinn, P. A., et al.: Observation of energetic electrons within magnetic islands, Nature Phys., 4, 19–23, doi:10.1038/nphys777, 2008.; Coppi, B.: Inertial instabilities in plasmas, Phys. Lett., 11, 226–228, doi:10.1016/0031-9163(64)90419-6, 1964.; Deng, X. H. and Matsumoto, H.: Rapid magnetic reconnection in the Earth's magnetosphere mediated by whistler waves, Nature, 410, 557–560, doi:10.1038/35069018, 2001.; Drake, J., Shay, M., and Swisdak, M.: The Hall fields and fast magnetic reconnection, Phys. Plasmas, 15, 042306, doi:10.1063/1.2901194, 2008.; Frey, H., Phan, T., Fuselier, S., and Mende, S.: Continuous magnetic reconnection at Earth's magnetopause, Nature, 426, 533, doi:10.1038/nature02084, 2003.; Faganello, M., Califano, F., and Pegoraro, F.: Competing Mechanisms of Plasma Transport in Inhomogeneous Configurations with Velocity Shear: The Solar-Wind Interaction with Earth's Magnetosphere, Phys. Rev. Lett., 100, 015001, doi:10.1103/PhysRevLett.100.015001, 2008.; Nykyri, K. and Otto, A.: Influence of the Hall term on KH instability and reconnection inside KH vortices, Ann. Geophys., 22, 935–949, 2004.; Faganello, M., Califano, F., and Pegoraro, F.: Numerical Evidence of Undriven, Fast Reconnection in the Solar-Wind Interaction with Earth's Magnetosphere: Formation of Electromagnetic Coherent Structures, Phys. Rev. Lett., 101, 105001, doi:10.1103/PhysRevLett.101.105001, 2008.; Faganello, M., Califano, F., and Pegoraro, F.: Time window for magnetic reconnection in plasma configurations with velocity shear, Phys. Rev. Lett., 101, 175003, doi:10.1103/PhysRevLett.101.175003, 2008.; Furth, H. P., Killeen, J., Rosenbluth, M. N., et al.: Finite-Resistivity Instabilities of a Sheet Pinch, Phys. Fluids, 6, 459–484, doi:10.1063/1.1706761, 1963.; Hasegawa, H., Fujimoto, M., Phan, T.-D., et al.: Transport of solar wind into Earth�s magnetosphere through rolled-up Kelvin-Helmholtz vortices, Nature, 430, 755, doi:10.1038/nature02799, 2004.; Hasegawa, H., Sonnerup, B. U. Ö., Klecker, B., Paschmann, G., Dunlop, M. W., and Rème, H.: Optimal reconstruction of magnetopause structures from Cluster data, Ann. Geophys., 23, 973–982, 2005.; Hesse, M. and Winske, D.: Hybrid Simulations of Collisionless Reconnection in Current Sheets, J. Geophys. Res., 99, 11177–11192, doi:10.1029/94JA00676, 1998.; Landi, S., Velli, M., and Einaudi, G.: Alfvén Waves and Shock Wave Formation at an X-Point Magnetic Field Configuration, Astrophys. J., 624, 392–401, doi:10.1086/428822, 2005.; Liu, Z. X. and Hu, Y. D.: Local magnetic reconnection caused by vortices in the flow field, Geophys. Res. Lett., 15, 752–755, doi:10.1029/GL015i008p00752, 1988.; Mandt, M., Denton, R., and Drake, J.: Transition to Whistler Mediated Magnetic Reconnection, Geophys. Res. Lett., 21, 73–76, doi:10.1029/93GL03382, 1994.; Matsumoto, Y. and Hoshino, M.: Onset of turbulence induced by a Kelvin-Helmholtz vortex, Geophys. Res. Lett., 31, L02807, doi:10.1029/2003GL018195, 2004.; Miura, A.: Compressible magnetohydrodynamic Kelvin-Helmholtz instability with vortex pairing in the two-dimensional transverse configuration, Phys. Plasmas, 4, 2871–2885, doi:10.1063/1.872419, 1997.; Mozer, F. S., Bale, S. D., and Phan, T. D.: Evidence of Diffusion Regions at a Subsolar Magnetopause Crossing, Phys. Rev. Lett., 89, 015002, doi:10.1103/PhysRevLett.89.015002, 2004.; Nagai, T., Shinohara, I., and Fujimoto, M.: Geotail obs

 

Click To View

Additional Books


  • Contraction of Westward-travelling Nonlo... (by )
  • Initial State Perturbations in Ensemble ... (by )
  • Intermittent Particle Dynamics in Marine... (by )
  • Total Ozone Time Series Analysis: a Neur... (by )
  • A Fluid Description for Landau Damping o... (by )
  • Internal Gravity Waves: Analysis Using t... (by )
  • Temperature Distribution and Hadley Circ... (by )
  • Extracting Preseismic Electromagnetic Si... (by )
  • The Role of Soil States in Medium-range ... (by )
  • Channelling of High-latitude Boundary-la... (by )
  • A Barnes-hut Scheme for Simulating Fault... (by )
  • Non-diffusive, Non-local Transport in Fl... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.