World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Energy Transformations and Dissipation of Nonlinear Internal Waves Over New Jersey's Continental Shelf : Volume 17, Issue 4 (03/08/2010)

By Shroyer, E. L.

Click here to view

Book Id: WPLBN0003978501
Format Type: PDF Article :
File Size: Pages 16
Reproduction Date: 2015

Title: Energy Transformations and Dissipation of Nonlinear Internal Waves Over New Jersey's Continental Shelf : Volume 17, Issue 4 (03/08/2010)  
Author: Shroyer, E. L.
Volume: Vol. 17, Issue 4
Language: English
Subject: Science, Nonlinear, Processes
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Historic
Publication Date:
2010
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Moum, J. N., Nash, J. D., & Shroyer, E. L. (2010). Energy Transformations and Dissipation of Nonlinear Internal Waves Over New Jersey's Continental Shelf : Volume 17, Issue 4 (03/08/2010). Retrieved from http://hawaiilibrary.net/


Description
Description: College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA. The energetics of large amplitude, high-frequency nonlinear internal waves (NLIWs) observed over the New Jersey continental shelf are summarized from ship and mooring data acquired in August 2006. NLIW energy was typically on the order of 105 Jm−1, and the wave dissipative loss was near 50 W m−1. However, wave energies (dissipations) were ~10 (~2) times greater than these values during a particular week-long period. In general, the leading waves in a packet grew in energy across the outer shelf, reached peak values near 40 km inshore of the shelf break, and then lost energy to turbulent mixing. Wave growth was attributed to the bore-like nature of the internal tide, as wave groups that exhibited larger long-term (lasting for a few hours) displacements of the pycnocline offshore typically had greater energy inshore. For ship-observed NLIWs, the average dissipative loss over the region of decay scaled with the peak energy in waves; extending this scaling to mooring data produces estimates of NLIW dissipative loss consistent with those made using the flux divergence of wave energy. The decay time scale of the NLIWs was approximately 12 h corresponding to a length scale of 35 km (O(100) wavelengths). Imposed on these larger scale energetic trends, were short, rapid exchanges associated with wave interactions and shoaling on a localized topographic rise. Both of these events resulted in the onset of shear instabilities and large energy loss to turbulent mixing.

Summary
Energy transformations and dissipation of nonlinear internal waves over New Jersey's continental shelf

Excerpt
Apel, J. R., Holbrook, J. R., Liu, A. K., and Tsai, J. J.: The {S}ulu {S}ea Internal Soliton Experiment, J. Phys. Ocean., 15, 1625–1651, 1985.; Brickman, D. and Loder, J. W.: Energetics of the Internal Tide on Northern Georges Bank, J. Phys. Ocean., 23, 409–424, 2.0.CO;2>doi:10.1175/1520-0485(1993)023<0409:EOTITO>2.0.CO;2, 1993.; Chang, M.-H., Lein, R.-C., Tang, T. Y., D'Asaro, E. A., and Yang, Y. J.: Energy flux of nonlinear internal waves in northern South China Sea, Geophys. Res. Let., 33, L03607, doi:10.1029/2005GL025196, 2006.; Drazin, P. G.: Solitons, 2nd edn., Cambridge University Press, 1984.; Colosi, J. A., Beardsley, R. C., Lynch, J. F., Gawarkiewicz, G., Chiu, C.-S., and Scotti, A.: Observations of nonlinear internal waves on the outer {N}ew England continental shelf during the summer {S}helfbreak {P}rimer study, J. Geophys. Res., 106, 9587–9601, doi:10.1029/2000JC900124, 2001.; Gill, A. E.: Atmosphere-Ocean Dynamics, in: International Geophysics Series, Academic Press, San Diego, California, vol. 30, 219–225, 1982.; Grimshaw, R., Pelinovsky, E., Talipova, T., and Kurkin, A.: Simulation of the transformation of internal solitary waves on oceanic shelves, J. Phys. Ocean., 34, 2774–2791, doi:10.1175/JPO2652.1, 2004.; Hebert, D.: The available potential energy of an isolated feature, J. Geophys. Res., 93, 556–564, doi:10.1029/JC093iC01p00556, 1998.; Holloway, P. E., Pelinovsky, E., Talipova, T., and Barnes, B.: A Nonlinear Model of Internal Tide Transformation on the {A}ustralian {N}orth {W}est Shelf, J. Phys. Ocean., 27, 871–896, doi:10.1175/1520-0485(1997)027<0871:ANMOIT>2.0.CO;2, 1997.; Inall, M. E., Rippeth, T. P., and Sherwin, T. J.: Impact of nonlinear waves on the dissipation of the internal tidal energy at a shelf break, J. Geophys. Res., 105, 8687–8705, doi:10.1029/1999JC900299, 2000.; Klymak, J. M. and Moum, J. N.: Internal solitary waves of elevation advancing on a shoaling shelf, Geophys. Res. Let., 30, p. 2045, doi:10.1029/2003GL017706, 2003.; Klymak, J. M., Pinkel, R., Liu, C., Liu, A. K., and David, L.: Prototypical solitons in the {S}outh {C}hina {S}ea, Geophys. Res. Let., 33, L11607, doi:10.1029/2006GL025932, 2006.; Lamb, K. G.: Energy and pseudoenergy flux in the internal wave field generated by tidal flow over topography, Cont. Shelf Res., 27, 1208–1232, doi:10.1016/j.csr.2007.01.020, 2007.; Lamb, K. G. and Nguyen, V. T.: Calculating Energy Flux in Internal Solitary Waves with an Application to Reflectance, J. Phys. Ocean., 39, 559–580, doi:10.1175/2008JPO3882.1, 2009.; Mac{K}innon, J. A. and Gregg, M. C.: Mixing on the late-summer New England shelf – Solibores, shear and stratification, J. Phys. Ocean., 33, 1476–1492, doi:10.1175/1520-0485(2003)033<1476:MOTLNE>2.0.CO;2, 2003.; Moum, J., Klymak, J., Nash, J., Perlin, A., and Smyth, W.: Energy Transport by Nonlinear Internal Waves}: {E}xperimental Determination, J. Phys. Ocean., 37, 1968–1988, doi:10.1175/JPO3094.1, 2007{a.; Moum, J. N. and Smyth, W. D.: The pressure disturbance of a nonlinear internal wave train, J. Fluid Mech., 558, 153–177, doi:10.1017/S0022112006000036, 2006.; Moum, J. N., Gregg, M. C., Lien, R. C., and Carr, M. E.: Comparison of Turbulence Kinetic Energy Dissipation Rate Estimates from Two Ocean Microstructure Profilers, J. Atmos. Ocean. Tech., 12, 346–366, doi:10.1175/1520-0426(1995)012<0346:COTKED>2.0.CO;2, 1995.; Moum, J. N., Farmer, D. M., Smyth, W. D., Armi, L., an

 

Click To View

Additional Books


  • The Nonlinear Coupling of Electromagneti... (by )
  • Universal Multifractal Martian Topograph... (by )
  • Closure of Multi-fluid and Kinetic Equat... (by )
  • Turbulence in the Interstellar Medium : ... (by )
  • Geophysical Turbulence Data and Turbulen... (by )
  • An Assessment of Bayesian Bias Estimator... (by )
  • Spatio-temporal Filling of Missing Point... (by )
  • Seasonal Variability of the Subpolar Gyr... (by )
  • Resonant-to-nonresonant Transition in El... (by )
  • On the Influence of Spatial Sampling on ... (by )
  • Earthquake Simulations with Time-depende... (by )
  • Topographic Instability of Flow in a Rot... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.