World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Numerical Detection of Unstable Periodic Orbits in Continuous-time Dynamical Systems with Chaotic Behaviors : Volume 14, Issue 5 (14/09/2007)

By Saiki, Y.

Click here to view

Book Id: WPLBN0003979168
Format Type: PDF Article :
File Size: Pages 6
Reproduction Date: 2015

Title: Numerical Detection of Unstable Periodic Orbits in Continuous-time Dynamical Systems with Chaotic Behaviors : Volume 14, Issue 5 (14/09/2007)  
Author: Saiki, Y.
Volume: Vol. 14, Issue 5
Language: English
Subject: Science, Nonlinear, Processes
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Saiki, Y. (2007). Numerical Detection of Unstable Periodic Orbits in Continuous-time Dynamical Systems with Chaotic Behaviors : Volume 14, Issue 5 (14/09/2007). Retrieved from

Description: Research Institute for Mathematical Sciences, Kyoto University, Japan. An infinite number of unstable periodic orbits (UPOs) are embedded in a chaotic system which models some complex phenomenon. Several algorithms which extract UPOs numerically from continuous-time chaotic systems have been proposed. In this article the damped Newton-Raphson-Mees algorithm is reviewed, and some important techniques and remarks concerning the practical numerical computations are exemplified by employing the Lorenz system.

Numerical detection of unstable periodic orbits in continuous-time dynamical systems with chaotic behaviors

Biham, O. and Wenzel, W.: Characterization of unstable periodic orbits in chaotic attractors and repellers, Phys. Rev. Lett., 63, 819–822, 1989.; Bowen, R.: Topological entropy and AxiomA, Global Analysis (Berkeley, CA, 1968) Proc. Sympos. Pure Math., 14, Amererican Mathathematical Society, Providence, RI, 23–41, 1970.; Chian, A. C. L., Kamide, Y., Rempel, E. L., and Santana, W. M.: On the chaotic nature of solar-terrestrial environment: interplanetary Alfven intermittency, J. Geophys. Res., 111(10), A07S03, doi:10.1029/2005JA011396, 2006.; Chicone, C.: Ordinary Differential Equations with Applications, Springer-Verlag, 1999.; Eckhardt, B. and Ott, E.: Periodic orbit analysis of the Lorenz attractor, Zeitschrift fur Physik B Condensed Matter, 93(2), 258–266, 1994.; Franceschini, V., Giberti, C., and Zheng, Z.: Characterization of the Lorenz attractor by unstable periodic orbits, Nonlinearity, 6(2), 251–258, 1993.; Gratrix, S. and Elgin, J. N.: Pointwise Dimensions of the Lorenz Attractor, Phys. Rev. Lett., 92, 014101:1–4, 2004.; Hsu, G. H., Ott, E., and Grebogi, C.: Strange saddles and the dimension of their invariant manifolds, Phys. Lett. A, 127, 199–204, 1988.; Ishiyama, K. and Saiki, Y.: Unstable periodic orbits and chaotic economic growth, Chaos, Solitons and Fractals, 26, 33–42, 2005.; Kantz, H. and Grassberger, P.: Repellers, semi-attractors, and long-lived chaotic transients, Physica D, 17, 75–86, 1985.; Kato, S. and Yamada, M.: Unstable periodic solutions embedded in a shell model turbulence, Physical Review E, 68(2), 25302:1-4, 2003.; Kawahara, G. and Kida, S.: Periodic motion embedded in plane Couette turbulence: regeneration cycle and burst, J. Fluid Mechanics, 449, 291–300, 2001.; Kazantsev, E.: Unstable periodic orbits and attractor of the barotropic ocean model, Nonlin. Processes Geophys., 5, 193–208, 1998.; Kazantsev, E.: Sensitivity of the attractor of the barotropic ocean model to external influences: approach by unstable periodic orbits, Nonlin. Processes Geophys., 8, 301–311, 2001.; Lan, Y. and Cvitanović, P.: Variational method for finding periodic orbits in a general flow, Phys. Rev. E, 69(1), 016217, 2004.; Lorenz, E. N.: Deterministic nonperiodic flow, J. Atmos. Sci., 20, 130–141, 1963.; Mees, A. I.: Dynamics of Feedback Systems, John Wiley and Sons, New York, N. Y., 1981.; Nusse, H. E. and Yorke, J. A.: A procedure for finding numerical trajectories on chaotic saddles, Physica D, 36, 137–156, 1989.; Parker, T. S. and Chua, L. O.: Practical Numerical Algorithms for Chaotic Systems, Springer-Verlag, 1989.; Pyragas, A.: Continuous control of chaos by selfcontrolling feedback, Phys. Lett. A, 170, 421–428, 1992.; Rempel, E. L. and Chian, A. C.-L.: Space plasma dynamics: Alfven intermittent Chaos, Adv. Space Res., 35, 951–960, 2005.; Rempel, E. L. and Chian, A. C.-L.: Origin of Transient and Intermittent Dynamics in Spatiotemporal Chaotic Systems, Phys. Rev. Lett., 98, 14101:1-4, 2007. %; ; Sparrow, C.: The Lorenz equations: Bifurcations, chaos, and strange attractors, Springer-Verlag, 1982.; Tucker, W.: The Lorenz attractor exists, Comptes Rendus de l'Académie des Sciences, Série I. Mathmatique, 328:12, 1197–1202, 1999.; Tucker, W.: A rigorous ODE solver and Smale's 14th problem, Foundations of Computational Mathematics, 2, 53–117, 2002.; van Veen, L., Kida


Click To View

Additional Books

  • Numerical Modelling of Disintegration of... (by )
  • Deterministic Chaos at the Ocean Surface... (by )
  • Sensibility to Noise of New Multifractal... (by )
  • Strongly Nonlinear, Simple Internal Wave... (by )
  • On the Nonexistence of Large Amplitude S... (by )
  • Data Assimilation Experiments Using Diff... (by )
  • The Mechanism of Non-linear Photochemica... (by )
  • Statistics of Locally Coupled Ocean and ... (by )
  • Effects of Mhd Slow Shocks Propagating A... (by )
  • Soil Nutrient Cycles as a Nonlinear Dyna... (by )
  • Chaotic Properties of a Fully Developed ... (by )
  • Nonlinear Analysis of Magnetospheric Dat... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.