World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Numerical Detection of Unstable Periodic Orbits in Continuous-time Dynamical Systems with Chaotic Behaviors : Volume 14, Issue 5 (14/09/2007)

By Saiki, Y.

Click here to view

Book Id: WPLBN0003979168
Format Type: PDF Article :
File Size: Pages 6
Reproduction Date: 2015

Title: Numerical Detection of Unstable Periodic Orbits in Continuous-time Dynamical Systems with Chaotic Behaviors : Volume 14, Issue 5 (14/09/2007)  
Author: Saiki, Y.
Volume: Vol. 14, Issue 5
Language: English
Subject: Science, Nonlinear, Processes
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Historic
Publication Date:
2007
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Saiki, Y. (2007). Numerical Detection of Unstable Periodic Orbits in Continuous-time Dynamical Systems with Chaotic Behaviors : Volume 14, Issue 5 (14/09/2007). Retrieved from http://hawaiilibrary.net/


Description
Description: Research Institute for Mathematical Sciences, Kyoto University, Japan. An infinite number of unstable periodic orbits (UPOs) are embedded in a chaotic system which models some complex phenomenon. Several algorithms which extract UPOs numerically from continuous-time chaotic systems have been proposed. In this article the damped Newton-Raphson-Mees algorithm is reviewed, and some important techniques and remarks concerning the practical numerical computations are exemplified by employing the Lorenz system.

Summary
Numerical detection of unstable periodic orbits in continuous-time dynamical systems with chaotic behaviors

Excerpt
Biham, O. and Wenzel, W.: Characterization of unstable periodic orbits in chaotic attractors and repellers, Phys. Rev. Lett., 63, 819–822, 1989.; Bowen, R.: Topological entropy and AxiomA, Global Analysis (Berkeley, CA, 1968) Proc. Sympos. Pure Math., 14, Amererican Mathathematical Society, Providence, RI, 23–41, 1970.; Chian, A. C. L., Kamide, Y., Rempel, E. L., and Santana, W. M.: On the chaotic nature of solar-terrestrial environment: interplanetary Alfven intermittency, J. Geophys. Res., 111(10), A07S03, doi:10.1029/2005JA011396, 2006.; Chicone, C.: Ordinary Differential Equations with Applications, Springer-Verlag, 1999.; Eckhardt, B. and Ott, E.: Periodic orbit analysis of the Lorenz attractor, Zeitschrift fur Physik B Condensed Matter, 93(2), 258–266, 1994.; Franceschini, V., Giberti, C., and Zheng, Z.: Characterization of the Lorenz attractor by unstable periodic orbits, Nonlinearity, 6(2), 251–258, 1993.; Gratrix, S. and Elgin, J. N.: Pointwise Dimensions of the Lorenz Attractor, Phys. Rev. Lett., 92, 014101:1–4, 2004.; Hsu, G. H., Ott, E., and Grebogi, C.: Strange saddles and the dimension of their invariant manifolds, Phys. Lett. A, 127, 199–204, 1988.; Ishiyama, K. and Saiki, Y.: Unstable periodic orbits and chaotic economic growth, Chaos, Solitons and Fractals, 26, 33–42, 2005.; Kantz, H. and Grassberger, P.: Repellers, semi-attractors, and long-lived chaotic transients, Physica D, 17, 75–86, 1985.; Kato, S. and Yamada, M.: Unstable periodic solutions embedded in a shell model turbulence, Physical Review E, 68(2), 25302:1-4, 2003.; Kawahara, G. and Kida, S.: Periodic motion embedded in plane Couette turbulence: regeneration cycle and burst, J. Fluid Mechanics, 449, 291–300, 2001.; Kazantsev, E.: Unstable periodic orbits and attractor of the barotropic ocean model, Nonlin. Processes Geophys., 5, 193–208, 1998.; Kazantsev, E.: Sensitivity of the attractor of the barotropic ocean model to external influences: approach by unstable periodic orbits, Nonlin. Processes Geophys., 8, 301–311, 2001.; Lan, Y. and Cvitanović, P.: Variational method for finding periodic orbits in a general flow, Phys. Rev. E, 69(1), 016217, 2004.; Lorenz, E. N.: Deterministic nonperiodic flow, J. Atmos. Sci., 20, 130–141, 1963.; Mees, A. I.: Dynamics of Feedback Systems, John Wiley and Sons, New York, N. Y., 1981.; Nusse, H. E. and Yorke, J. A.: A procedure for finding numerical trajectories on chaotic saddles, Physica D, 36, 137–156, 1989.; Parker, T. S. and Chua, L. O.: Practical Numerical Algorithms for Chaotic Systems, Springer-Verlag, 1989.; Pyragas, A.: Continuous control of chaos by selfcontrolling feedback, Phys. Lett. A, 170, 421–428, 1992.; Rempel, E. L. and Chian, A. C.-L.: Space plasma dynamics: Alfven intermittent Chaos, Adv. Space Res., 35, 951–960, 2005.; Rempel, E. L. and Chian, A. C.-L.: Origin of Transient and Intermittent Dynamics in Spatiotemporal Chaotic Systems, Phys. Rev. Lett., 98, 14101:1-4, 2007. %; ; Sparrow, C.: The Lorenz equations: Bifurcations, chaos, and strange attractors, Springer-Verlag, 1982.; Tucker, W.: The Lorenz attractor exists, Comptes Rendus de l'Académie des Sciences, Série I. Mathmatique, 328:12, 1197–1202, 1999.; Tucker, W.: A rigorous ODE solver and Smale's 14th problem, Foundations of Computational Mathematics, 2, 53–117, 2002.; van Veen, L., Kida

 

Click To View

Additional Books


  • Numerical Modelling of Disintegration of... (by )
  • Deterministic Chaos at the Ocean Surface... (by )
  • Sensibility to Noise of New Multifractal... (by )
  • Strongly Nonlinear, Simple Internal Wave... (by )
  • On the Nonexistence of Large Amplitude S... (by )
  • Data Assimilation Experiments Using Diff... (by )
  • The Mechanism of Non-linear Photochemica... (by )
  • Statistics of Locally Coupled Ocean and ... (by )
  • Effects of Mhd Slow Shocks Propagating A... (by )
  • Soil Nutrient Cycles as a Nonlinear Dyna... (by )
  • Chaotic Properties of a Fully Developed ... (by )
  • Nonlinear Analysis of Magnetospheric Dat... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.