World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Direct and Inverse Cascades in the Geodynamo : Volume 15, Issue 6 (24/11/2008)

By Reshetnyak, M.

Click here to view

Book Id: WPLBN0003980237
Format Type: PDF Article :
File Size: Pages 8
Reproduction Date: 2015

Title: Direct and Inverse Cascades in the Geodynamo : Volume 15, Issue 6 (24/11/2008)  
Author: Reshetnyak, M.
Volume: Vol. 15, Issue 6
Language: English
Subject: Science, Nonlinear, Processes
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Hejda, P., & Reshetnyak, M. (2008). Direct and Inverse Cascades in the Geodynamo : Volume 15, Issue 6 (24/11/2008). Retrieved from

Description: Institute of the Physics of the Earth, Russian Acad. Sci, 123995 Moscow, Russia. The rapid rotation of planets causes cyclonic thermal turbulence in their cores which may generate the large-scale magnetic fields observed outside the planets. We investigate numerically a model based on the geodynamo equations in simplified geometry, which enables us to reproduce the main features of small-scale geostrophic flows in physical and wave vector spaces. We find fluxes of kinetic and magnetic energy as a function of the wave number and demonstrate the co-existence of forward and inverse cascades. We also explain the mechanism of magnetic field saturation at the end of the kinematic dynamo regime.

Direct and inverse cascades in the geodynamo

Alexakis, A., Mininni, P. D., and Pouquet, A.: Turbulent cascades, transefer, and scale interactions in magentohydrodynamics, New J. Phys., 9, 1–20, 2007.; Batchelor, G. K.: The theory of homogeneous turbulence, Cambridge University Press, Cambridge, 1953.; Buffett, B.: A comparison of subgrid-scale models for large-eddy simulations of convection in the Earth's core, Geophys. J. Int., 153, 753–765, 2003.; Busse, F. H.: Thermal instabilities in rapidly rotating systems, J. Fluid Mech., 44, 441–460 , 1970.; Cattaneo, F., Emonet, T., and Weis, N.: On the interaction between convection and magnetic fields, Astrophys. J., 588, 1183–1198, 2003.; Chandrasekhar, S.: Hydrodynamic and hydromagnetic stability, Dover Publications. Inc., NY, 1961.; Constantin, P.: Energy spectrum of quasigeostrophic turbulence, Phys. Rev. Lett., 89(18), 184 501–184 504, 2002.; Frisch, U., Pouquet, A., Léorat, J., and Mazure, A..: Possibility of an inverse cascade of a magnetic helicity in magnetohydrodynamic turbulence, J. Fluid Mech., 68, part 4, 769–778, 1975.; Frisch, U.: Turbulence: the legacy of A. N. Kolmogorov, Cambridge University Press, Cambridge, 1995.; Harden, H. and Hansen, U.: A finite-volume solution method for thermal convection and dynamo problems in spherical shells, Geophys. J. Int., 161, 522-532, 2005.; Hejda, P. and Reshetnyak, M.: Control volume method for the thermal convection problem in a rotating spherical shell: test on the benchmark solution, Stud. Geophys. Geod., 48, 741–746, 2004.; Hollerbach, R. and Rüdiger, R.: The Magnetic Universe, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2004.; Hossain, M.: Reduction of the dimensionality of turbulence due to a strong rotation, Phys. Fluids. 6(4), 1077–1080, 1994.; Jones, C. A.: Convection-driven geodynamo models, Phil. Trans. R. Soc. London, 358, 873–897, 2000.; Jones, C. A. and Roberts, P. H.: Convection driven dynamos in a rotating plane layer, J. Fluid Mech., 404, 311–343, 2000.; Kageyama, A. and Sato, T.: Velocity and magnetic field structures in a magnetohydrodynamic dynamo, Phys. Plasma, 4(5), 1569–1575, 1997.; Kono, M. and Roberts, P.: Recent geodynamo simulations and observations of the geomagnetic field, Rev. Geophys., 40(10), B1–B41, 2002.; Kraichnan, R. H. and Montgomery, D.: Two-dimensional turbulence, Rep. Prog. Phys., 43, 547–619, 1980.; Meneguzzi, M. and Pouquet, A.: Turbulent dynamos driven by convection, J. Fluid Mech., 205, 297–318, 1989.; Orszag, S. A.: Numerical simulation of incompressible flows within simple boundaries, I. Galerkin (spectral) representations, Stud. Appl. Math. L., 4, 293–327, 1971.; Matsushima, M., Nakajima, T., and Roberts, P.: The anisotropy of local turbulence in the Earth's core, Earth Planets Space, 51, 277–286, 1999.; Tabeling, P.: Two-dimensional turbulence: a physicist approach. Phys. Reports., 362, 1–62, 2002.; Verma, M.: Statistical theory of magnetohydrodynamic turbulence: recent results, Phys. Reports, 401, 229–380, 2004.; Waleffe, F.: The nature of triad interactions in homogeneous turbulence, Phys. Fluids., A4(2), 350–363, 1992.; Zeldovich, Y. B., Ruzmaikin, A. A., and Sokoloff, D.D.: Magnetic fields in astrophysics, Gordon and Breach, NY, 1983.


Click To View

Additional Books

  • A Reexamination of Methods for Evaluatin... (by )
  • Permanent Bedforms in a Theoretical Mode... (by )
  • Parameter Estimation in an Atmospheric G... (by )
  • Scaling Similarities of Multiple Fractur... (by )
  • Solar Wind Vs Magnetosheath Turbulence a... (by )
  • Testing for Nonlinearity in Radiocarbon ... (by )
  • Thin and Superthin Ion Current Sheets. Q... (by )
  • Multi-parameter Uncertainty Analysis of ... (by )
  • Tempting Long-memory - on the Interpreta... (by )
  • Large-scale Instability of a Generalized... (by )
  • Assessment of Numerical Schemes for Solv... (by )
  • A Centre Manifold Approach to Solitary W... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.