World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

The Effect of Volatile Bubble Growth Rate on the Periodic Dynamics of Shallow Volcanic Systems : Volume 17, Issue 2 (20/04/2010)

By L'Heureux, I.

Click here to view

Book Id: WPLBN0003980642
Format Type: PDF Article :
File Size: Pages 15
Reproduction Date: 2015

Title: The Effect of Volatile Bubble Growth Rate on the Periodic Dynamics of Shallow Volcanic Systems : Volume 17, Issue 2 (20/04/2010)  
Author: L'Heureux, I.
Volume: Vol. 17, Issue 2
Language: English
Subject: Science, Nonlinear, Processes
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Historic
Publication Date:
2010
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

L'heureux, I. (2010). The Effect of Volatile Bubble Growth Rate on the Periodic Dynamics of Shallow Volcanic Systems : Volume 17, Issue 2 (20/04/2010). Retrieved from http://hawaiilibrary.net/


Description
Description: Ottawa-Carleton Institute of Physics and Department of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N6N5, Canada. Many volcanic eruptions exhibit periodic behavior. For instance, periodic ground inflations and deflations in proximity to a volcano are the consequences of periodic overpressure variations in the magma conduit and periodic magma flow rate. The period varies from a few hours to many years, depending on the volcano parameters. On the other hand, volatile components exsolve from an ascending magma by forming bubbles. The strong dependence of the melt viscosity with the volatile concentration generates a positive feedback on the magma flow. We consider here the effect of the growth of volatile bubbles on the dynamics of a magmatic flow in a shallow volcanic system. Various expressions for the bubble growth rate are treated, thus generalizing previous work. In particular, a growth rate law derived from a recent many-bubble theory is considered. It is seen that, for a range of flow rate values at the base of the magma conduit, the system undergoes a Hopf bifurcation. Periodic solutions compatible with the observations are generated. This work shows that measurements of volcanic activity have the potential to test various bubble growth models in magmatic systems.

Summary
The effect of volatile bubble growth rate on the periodic dynamics of shallow volcanic systems

Excerpt
Costa, A., Melnik, O., Sparks, R. S. J., and Voight, B.: Control of magma flow in dykes on cyclic lava dome extrusion, Geophys. Res. Lett., 34, L02303, doi:10.1029/2006GL027466, 2007.; Harris, A. J. L., Rose, W. I., and Flynn, L. P.: Temporal trends in lava dome extrusion at Santiaguito 1922–2000, Bull. Volcanol., 65, 77–89, 2003.; Hess, K.-U. and Dingwell, D. B.: Viscosities of hydrous leucogranitic melts: a non- Arrhenian model, Amer. Mineral., 81, 1297–1300, 1996.; Landau, L. D. and Lifshitz, E. M.: Theory of Elasticity, Pergamon Press, Oxford, 1970.; L'Heureux, I.: A new model of volatile bubble growth in a magmatic system: Isobaric case, J. Geophys. Res., 112, B12208, doi:10.1029/2006JB004872, 2007.; Barmin, A., Melnik, O., and Sparks, R. S. J.: Periodic behavior in lava dome eruptions, Earth Planet. Sci. Lett., 199, 173–184, 2002.; Behrens, H. and Gaillard, F.: Geochemical aspects of melts: Volatiles and redox behavior, Elements, 2, 275–280, 2006.; Bottinga, Y. and Javoy, M.: Mid-ocean ridge basalt degassing: Bubble nucleation, J. Geophys. Res., 95, 5125–5131, 1990.; Burnham, C. W.: Water in magmas: A mixing model, Geochim. Cosmochim. Act., 39, 1077–1084, 1975.; Clemens, J. D. and Petford, N.: Granitic melt viscosity and silicic magma dynamics in contrasting tectonic settings, J. Geol. Soc. (London), 156, 1057–1060, 1999.; Costa, A. and Macedonio, G.: Nonlinear phenomena in fluids with temperature-dependent viscosity: An hysteresis model for magma flow in conduits, Geophys. Res. Lett., 29, 1402, doi:10.1029/2001GLO14493, 2002.; De Vivo, B., Lima A., and Webster, J. D.: Volatiles in magmatic-volcanic systems, Elements, 1, 19–24, 2005.; Mader, H. M.: Conduit flow and fragmentation, in: The Physics of Explosive Volcanic Eruptions, edited by: Gilbert, J. S. and Sparks, R. S. J., Special Publication no. 145, Geol. Soc., London, 27–50, 1998.; Marqusee, J. A. and Ross, J.: Theory of Ostwald ripening: Competitive growth and its dependence on volume fraction, J. Chem. Phys., 80, 536–543, 1984.; Melnik, O. and Sparks, R. S. J.: Nonlinear dynamics of lava dome extrusion, Nature, 402, 37–41, 1999.; Melnik, O. and Sparks, R. S. J.: Controls on conduit magma flow dynamics during lava dome building eruptions, J. Geophys. Res., 110, B02209, doi:10.1029/2004JB003183, 2005.; Mourtada-Bonnefoi, C. C., Provost, A., and Albarède, F.: Thermochemical dynamics of magma chambers: A simple model, J. Geophys. Res., 104, 7103–7115, 1999.; Nakada, S., Shimizu, H., and Ohta, K.: Overview of the 1990–1995 eruption at Unzen Volcano, J. Volcanol. Geotherm. Res., 89, 1–22, 1999.; Navon, O. and Lyakhovsky, V.: Vesiculation processes in silicic magmas, in: The Physics of Explosive Volcanic Eruptions, edited by: Gilbert, J. S. and Sparks, R. S. J., Special Publication no.145, Geol. Soc., London, 27–50, 1998.; Nakanishi, M. and Koyaguchi, T.: A stability analysis of a conduit flow model for lava dome eruptions, J. Volcanol. Geotherm. Res., 178, 46–57, 2008.; Ozerov, A., Ispolatov, I., and Lees, J.: Modeling Strombolian eruptions of Karymsky volcano, Kamchatka, Russia, J. Volcanol. Geotherm. Res., 122, 265–280, 2003.; Proussevitch, A. A., Sahagian, D. L., and Anderson, A. T.: Dynamics of diffusive bubble growth in magmas: Isothermal case, J. Geophys. Res., 98, 22283–22307, 1993.; Proussevitch, A. A. and Sahagian, D. L.: Dynamics of coupled diffusive and decompressive bubble growth in magatics systems, J. Geophys. Res., 101, 17447–17455, 1996.; Proussevitch, A. A. and Sahagian, D. L.: Dynamics and energetics of bubble growth in magmas: Analytical formulation and numerical modeling, J. Geophys.Res., 103, 18223–18251, 1998.; Shaw, H. R.: Viscosities of magmatic silicate liquids: an empirical method of prediction, Amer. J. Sci., 272, 870–893, 1972.; Sparks, R. S. J.: The dynamics of bubble formation and growth in magmas: A review and analysis, J. Volcanol. Geotherm. Res., 3, 1–37, 1978.; Sparks, R. S. J. and Young, S. R.: The eruption of Soufrière Hills volcano

 

Click To View

Additional Books


  • Nonlinear Analysis of Magnetospheric Dat... (by )
  • Complete Synchronization of Chaotic Atmo... (by )
  • Two- and Three-dimensional Computation o... (by )
  • Evolution of Unsteady Jets in the Raylei... (by )
  • Clifford Algebra-based Structure Filteri... (by )
  • Turbulent Spectra and Spectral Kinks in ... (by )
  • Acceleration and Transport of Ions in Tu... (by )
  • Return-current Formation in the Electron... (by )
  • Isotropy Restoration Toward High-beta Sp... (by )
  • Intermittency of Earthquake Cycles in a ... (by )
  • Force Chain and Contact Cycle Evolution ... (by )
  • Universal Multifractal Martian Topograph... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.