World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Comparison Between Local Ensemble Transform Kalman Filter and Psas in the Nasa Finite Volume Gcm – Perfect Model Experiments : Volume 15, Issue 4 (05/08/2008)

By Liu, J.

Click here to view

Book Id: WPLBN0003980967
Format Type: PDF Article :
File Size: Pages 15
Reproduction Date: 2015

Title: Comparison Between Local Ensemble Transform Kalman Filter and Psas in the Nasa Finite Volume Gcm – Perfect Model Experiments : Volume 15, Issue 4 (05/08/2008)  
Author: Liu, J.
Volume: Vol. 15, Issue 4
Language: English
Subject: Science, Nonlinear, Processes
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Historic
Publication Date:
2008
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Li, H., Fertig, E. J., Kalnay, E., Kostelich, E. J., Szunyogh, I., Hunt, B. R.,...Todling, R. (2008). Comparison Between Local Ensemble Transform Kalman Filter and Psas in the Nasa Finite Volume Gcm – Perfect Model Experiments : Volume 15, Issue 4 (05/08/2008). Retrieved from http://hawaiilibrary.net/


Description
Description: University of California, Berkeley, CA, USA. This paper compares the performance of the Local Ensemble Transform Kalman Filter (LETKF) with the Physical-Space Statistical Analysis System (PSAS) under a perfect model scenario. PSAS is a 3D-Var assimilation system used operationally in the Goddard Earth Observing System Data Assimilation System (GEOS-4 DAS). The comparison is carried out using simulated winds and geopotential height observations and the finite volume Global Circulation Model with 72 grid points zonally, 46 grid points meridionally and 55 vertical levels. With forty ensemble members, the LETKF obtains analyses and forecasts with significantly lower RMS errors than those from PSAS, especially over the Southern Hemisphere and oceans. This observed advantage of the LETKF over PSAS is due to the ability of the 40-member ensemble LETKF to capture flow-dependent errors and thus create a good estimate of the evolving background uncertainty. An initial decrease of the forecast errors in the Northern Hemisphere observed in the PSAS but not in the LETKF suggests that the LETKF analysis is more balanced.

Summary
Comparison between Local Ensemble Transform Kalman Filter and PSAS in the NASA finite volume GCM – perfect model experiments

Excerpt
Anderson, J. L.: An ensemble adjustment Kalman filter for data assimilation, Mon. Weather Rev., 129, 2884–2903, 2001.; Anderson, J. L. and Anderson, S. L.: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts, Mon. Weather Rev., 127, 2741–2758, 1999.; Bishop, C. H., Etherton, B., and Majumdar, S. J.: Adaptive sampling with the ensemble transform Kalman filter – Part I: Theoretical aspects, Mon. Weather Rev., 129, 420–436, 2001.; Bloom, S. C., Takacs, L. L., DaSilva, A. M., and Ledvina, D.: Data assimilation using incremental analysis updates, Mon. Weather Rev., 124, 1256–1271,1996.; Kalnay, E.: Atmospheric modeling, data assimilation and predictability, Cambridge Univ. Press, Cambridge, UK, 341 pp., 2003.; Bloom, S. C., DaSilva, A., Dee, D., et al.: Documentation and validation of the Goddard Earth Observing System (GOES) Data Assimilation System – Version 4, Technical report series on global modeling and data assimilation, 26, available at: http://gmao.gsfc.nasa.gov/systems/geos4/Bloom.pdf, 2005.; Cohn, S. E., DaSilva, A. M., Guo, J., Sienkiewicz, M., and Lamich, D.: Assessing the Effects of Data Selection with the DAO Physical-Space Statistical Analysis System, Mon. Weather Rev., 126, 2913–2926, 1998.; Courtier, P., Anderson, E., Heckley, W., Pailleux, J., Vasiljevic, D., Hamrud, M., Hollingsworth, A., Rabier, F., and Fisher, M.: The ECMWF implementation of three-dimensional variational assimilation (3D-Var) – I: Formulation, Q. J. Roy. Meteor. Soc., 124, 1783–1807, 1998.; Daley, R.: Atmospheric data analysis, Cambridge University Press, Cambridge, UK, 471 pp., 1991.; Dee, D. P. and DaSilva, A. M.: The choice of variable for atmospheric moisture analysis, Mon. Weather Rev., 131, 155–171, 2003.; Evensen, G.: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, J. Geophys. Res., 99(C5), 10 143–10 162, 1994.; Fertig, E. J., Hunt, B. R., Ott, E., and Szunyogh, I.: Assimilating nonlocal observations with a Local Ensemble Kalman Filter, Tellus A, 59, 719–730, 2007.; Hamill, T. M., Whitaker, J. S., and Snyder, C.: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter, Mon. Weather Rev., 129, 2776–2790, 2001.; Harlim, J., Hunt, B. R., Kalnay, E., and Yorke, J. A.: Convex error growth, Phys. Rev. Lett., 94, 228501, doi:10.1103/PhysRevLett.94.228501, 2005.; Houtekamer, P. L. and Mitchell, H. L.: A sequential Ensemble Kalman Filter for atmospheric data assimilation, Mon. Weather Rev., 129, 123–137, 2001.; Houtekamer, P. L, Mitchell, H. L., Pellerin, G., Buehner, M., Charron, M., Spacek, L., and Hansen, B.: Atmospheric data assimilation with the ensemble Kalman filter: Results with real observations, Mon. Weather Rev., 133, 604–620, 2005.; Hunt, B. R., Kalnay, E., Kostelich, E. J., Ott, E., Patil, D. J., Sauer, T., Szunyogh, I., Yorke, J. A., and Zimin, A. V.: Four-dimensional ensemble Kalman filtering, Tellus A, 56(4), 273–277, 2004.; Hunt, B. R., Kostelich, E. J., and Szunyogh, I.: Efficient Data Assimilation for Spatiotemporal Chaos: a Local Ensemble Transform Kalman Filter, Physica D, 230, 112–126, 2007.; Kalnay, E., Li, H., Miyoshi, T., Yang, S.-C., and Ballabrera-Poy, J. B.: 4D-Var or ensemble Kalman filter?, Tellus A, 59, 758–773, 2007.; Kuhl, D. D., Szunyogh, I., Kostelich, E. J., Patil, D. J., Gyarmati, G., Oczkowski, M., Hunt, B. R., Kalnay, E., Ott, E., and Yorke, J. A.: Assessing predictability with a Local Ensemble Kalman Filter, J. Atmos. Sci., 64, 1116–1140, 2007.; Lin, S. J.: A Vertically Lagrangian Finite-Volume Dynamical Core for Global Models, Mon. Weather Rev., 132, 2293–2307, 2004.; Liu, J.: Applications of the LETKF to adaptive observations, analysis sensitivity, observation impact and assimilation of moisture, Ph. D thesis, University of Maryland, MD, USA, 2007.; Lynch, P. and Huang, X.-Y.: Initialization of the HIRLAM model using a digiti

 

Click To View

Additional Books


  • Site Effect Classification Based on Micr... (by )
  • Brief Communication on One Mechanism of ... (by )
  • Solar Wind Interaction with the Earth's ... (by )
  • Testing the Detectability of Spatio–temp... (by )
  • Complexity and Predictability of Daily P... (by )
  • Theory of Localized Bipolar Wave-structu... (by )
  • Statistical Measures of Distribution Pat... (by )
  • Structuring of Turbulence and Its Impact... (by )
  • Multifractal Properties of Embedded Conv... (by )
  • Effects of the Synoptic Scale Variabilit... (by )
  • Deeper Understanding of Non-linear Geode... (by )
  • Intensity of Convective Motions in Marin... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.