World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

A Semi-phenomenological Approach to Explain the Event-size Distribution of the Drossel-schwabl Forest-fire Model : Volume 18, Issue 3 (21/06/2011)

By Hergarten, S.

Click here to view

Book Id: WPLBN0003982106
Format Type: PDF Article :
File Size: Pages 8
Reproduction Date: 2015

Title: A Semi-phenomenological Approach to Explain the Event-size Distribution of the Drossel-schwabl Forest-fire Model : Volume 18, Issue 3 (21/06/2011)  
Author: Hergarten, S.
Volume: Vol. 18, Issue 3
Language: English
Subject: Science, Nonlinear, Processes
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Historic
Publication Date:
2011
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Krenn, R., & Hergarten, S. (2011). A Semi-phenomenological Approach to Explain the Event-size Distribution of the Drossel-schwabl Forest-fire Model : Volume 18, Issue 3 (21/06/2011). Retrieved from http://hawaiilibrary.net/


Description
Description: Institut für Erdwissenschaften, Karl-Franzens-Universität Graz, Heinrichstraße 26, 8010 Graz, Austria. We present a novel approach to explain the complex scaling behavior of the Drossel-Schwabl forest-fire model in two dimensions. Clusters of trees are characterized by their size and perimeter only, whereas spatial correlations are neglected. Coalescence of clusters is restricted to clusters of similar sizes. Our approach derives the value of the scaling exponent τ of the event size distribution directly from the scaling of the accessible perimeter of percolation clusters. We obtain Τ = 1.19 in the limit of infinite growth rate, in perfect agreement with numerical results. Furthermore, our approach predicts the unusual transition from a power law to an exponential decay even quantitatively, while the exponential decay at large event sizes itself is reproduced only qualitatively.

Summary
A semi-phenomenological approach to explain the event-size distribution of the Drossel-Schwabl forest-fire model

Excerpt
Bak, P.: How Nature Works – the Science of Self-Organized Criticality, Copernicus, Springer, Berlin, Heidelberg, New York, 1996.; Bak, P., Tang, C., and Wiesenfeld, K.: Self-organized criticality. An explanation of 1/f noise, Phys. Rev. Lett., 59, 381–384, 1987.; Christensen, K., Flyvbjerg, H., and Olami, Z.: Self-organized critical forest-fire model: mean-field theory and simulation results in 1 to 6 dimensions, Phys. Rev. Lett., 71, 2737–2740, doi:10.1103/PhysRevLett.71.2737, 1993.; Clar, S., Drossel, B., and Schwabl, F.: Scaling laws and simulation results for the self-organized critical forest-fire model, Phys. Rev. E., 50, 1009–1018, 1994.; Drossel, B. and Schwabl, F.: Self-organized critical forest-fire model, Phys. Rev. Lett., 69, 1629–1632, 1992.; Gabrielov, A., Newman, W. I., and Turcotte, D. L.: Exactly soluble hierarchical clustering model: Inverse cascades, self-similarity, and scaling, Phys. Rev. E., 60, 5293–5300, doi:10.1103/PhysRevE.60.5293, 1999.; Grassberger, P.: On a self-organized critical forest fire model, J. Phys. A, 26, 2081–2089, 1993.; Grassberger, P.: Critical behaviour of the Drossel-Schwabl forest fire model, New J. Phys., 4, 17.1–17.15, doi:10.1088/1367-2630/4/1/317, 2002.; Grossman, T. and Aharony, A.: Structure and perimeters of percolation clusters, J. Phys. A: Math. Gen., 19, L745–L751, doi:10.1088/0305-4470/19/12/009, 1986.; Henley, C. L.: Statics of a self-organized percolation model, Phys. Rev. Lett., 71, 2741–2744, 1993.; Honecker, A. and Peschel, I.: Lenght scales and power laws in the two-dimensional forest-fire model, Physica A, 239, 509–530, 1997.; Jensen, H. J.: Self-Organized Criticality – Emergent Complex Behaviour in Physical and Biological Systems, Cambridge University Press, Cambridge, New York, Melbourne, 1998.; Krenn, R. and Hergarten, S.: Cellular automaton modelling of lightning-induced and man made forest fires, Nat. Hazards Earth Syst. Sci., 9, 1743–1748, doi:10.5194/nhess-9-1743-2009, 2009.; Kunz, H. and Souillard, B.: Essential singularity in percolation problems and asymptotic behavior of cluster size distribution, J. Stat. Phys., 19, 77–106, doi:10.1007/BF01020335, 1978.; Malamud, B. D., Morein, G., and Turcotte, D. L.: Forest fires: an example of self-organized critical behavior, Science, 281, 1840–1842, 1998.; Mo{ß}ner, W., Drossel, B., and Schwabl, F.: Computer simulations of the forest-fire model, Physica A, 190, 205–217, 1992.; Pastor-Satorras, R. and Vespignani, A.: Corrections to scaling in the forest-fire model, Phys. Rev. E., 61, 4854–4859, 2000.; Pruessner, G. and Jensen, H. J.: Broken scaling in the forest-fire model, Phys. Rev. E, 65, 056 707, 2002.; Olami, Z., Feder, H. J. S., and Christensen, K.: Self-organized criticality in a continuous, nonconservative cellular automation modeling earthquakes, Phys. Rev. Lett., 68, 1244–1247, 1992.; Schenk, K., Drossel, B., and Schwabl, F.: Self-organized critical forest-fire model on large scales, Phys. Rev. E., 65, 026135, 2002.; Zinck, R. D. and Grimm, V.: More realistic than anticipated: A classical forest-fire model from statistical physics captures real fire shapes, Open Ecol. J., 1, 8–13, doi:10.2174/1874213000801010008, 2008.

 

Click To View

Additional Books


  • Wave Interactions in a Shallow-water Mod... (by )
  • Solitons and Oscillitons in Multi-ion Sp... (by )
  • Simulations of Nonlinear Harmonic Genera... (by )
  • Temperature Distribution and Hadley Circ... (by )
  • Stochastic Resonance: from Climate to Bi... (by )
  • Direct Numerical Simulation of Intermitt... (by )
  • Error Growth and Dynamical Vectors Durin... (by )
  • 20Th Century Intraseasonal Asian Monsoon... (by )
  • Synchronicity as an Essential Property o... (by )
  • Skill Prediction of Local Weather Foreca... (by )
  • Combining Inflation-free and Iterative E... (by )
  • On the Scaling Characteristics of Observ... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.