World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

On Closure Parameter Estimation in Chaotic Systems : Volume 19, Issue 1 (15/02/2012)

By Hakkarainen, J.

Click here to view

Book Id: WPLBN0003982564
Format Type: PDF Article :
File Size: Pages 17
Reproduction Date: 2015

Title: On Closure Parameter Estimation in Chaotic Systems : Volume 19, Issue 1 (15/02/2012)  
Author: Hakkarainen, J.
Volume: Vol. 19, Issue 1
Language: English
Subject: Science, Nonlinear, Processes
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Historic
Publication Date:
2012
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Solonen, A., Laine, M., Tamminen, J., Ilin, A., Oja, E., Hakkarainen, J.,...Järvinen, H. (2012). On Closure Parameter Estimation in Chaotic Systems : Volume 19, Issue 1 (15/02/2012). Retrieved from http://hawaiilibrary.net/


Description
Description: Finnish Meteorological Institute, Helsinki, Finland. Many dynamical models, such as numerical weather prediction and climate models, contain so called closure parameters. These parameters usually appear in physical parameterizations of sub-grid scale processes, and they act as tuning handles of the models. Currently, the values of these parameters are specified mostly manually, but the increasing complexity of the models calls for more algorithmic ways to perform the tuning. Traditionally, parameters of dynamical systems are estimated by directly comparing the model simulations to observed data using, for instance, a least squares approach. However, if the models are chaotic, the classical approach can be ineffective, since small errors in the initial conditions can lead to large, unpredictable deviations from the observations. In this paper, we study numerical methods available for estimating closure parameters in chaotic models. We discuss three techniques: off-line likelihood calculations using filtering methods, the state augmentation method, and the approach that utilizes summary statistics from long model simulations. The properties of the methods are studied using a modified version of the Lorenz 95 system, where the effect of fast variables are described using a simple parameterization.

Summary
On closure parameter estimation in chaotic systems

Excerpt
Annan, J. and Hargreaves, J.: Efficient estimation and ensemble generation in climate modelling, Phil. Trans. R. Soc. A, 365, 2077–2088, doi:10.1098/rsta.2007.2067, 2007.; Annan, J. D., Lunt, D. J., Hargreaves, J. C., and Valdes, P. J.: Parameter estimation in an atmospheric GCM using the Ensemble Kalman Filter, Nonlin. Processes Geophys., 12, 363–371, doi:10.5194/npg-12-363-2005, 2005.; Auvinen, H., Bardsley, J. M., Haario, H., and Kauranne, T.: Large-Scale Kalman Filtering Using the Limited Memory BFGS Method, Electron. T. Numer. Ana., 35, 217–233, 2009.; Auvinen, H., Bardsley, J., Haario, H., and Kauranne, T.: The variational Kalman filter and an efficient implementation using limited memory BFGS, Int. J. Numer. Meth. Fl., 64, 314–335, 2010.; Bishop, C. M.: Pattern Recognition and Machine Learning, Information Science and Statistics, Springer, New York, 2nd Edn., 2006.; Bonavita, M., Torrisi, L., and Marcucci, F.: The ensemble Kalman filter in an operational regional NWP system: preliminary results with real observations, Q. J. Roy. Meteor. Soc., 134, 1733–1744, doi:10.1002/qj.313, 2008.; Cappe, O., Godsill, S., and Moulines, E.: An overview of existing methods and recent advances in sequential Monte Carlo, Proceedings of IEEE, 95, 899–924, doi:10.1109/JPROC.2007.893250, 2007.; Cornuet, J.-M., Santos, F., Beaumont, M. A., Robert, C. P., Marin, J.-M., Balding, D. J., Guillemaud, T., and Estoup, A.: Inferring population history with {DIY ABC}: a user-friendly approach to approximate {B}ayesian computation, Bioinformatics, 24, 2713–2719, 2008.; DelSole, T. and Yang, X.: State and Parameter Estimation in Stochastic Dynamical Models, Physica D, 239, 1781–1788, 2010.; Dowd, M.: Estimating parameters for a stochastic dynamic marine ecological system, Environmetrics, 22, 501–515, doi:10.1002/env.1083, 2011.; Evensen, G.: Data assimilation: The ensemble Kalman filter, Springer, 2007.; Gauthier, P., Tanguay, M., Laroche, S., Pellerin, S., and Morneau, J.: Extension of 3DVAR to 4DVAR: Implementation of 4DVAR at the Meteorological Service of Canada, Mon. Weather Rev., 135, 2339–2354, 2007.; Gelman, A., Carlin, J., Stern, H., and Rubin, D.: Bayesian Data Analysis, Chapman & Hall, 2nd Edn., 2003.; Haario, H., Saksman, E., and Tamminen, J.: An adaptive Metropolis algorithm, Bernoulli, 7, 223–242, 2001.; Haario, H., Laine, M., Mira, A., and Saksman, E.: DRAM: Efficient adaptive MCMC, Stat. Comput., 16, 339–354, doi:10.1007/s11222-006-9438-0, 2006.; Ionides, E., Breto, C., and King, A.: Inference for nonlinear dynamical systems, Proc. Nat. Aca. Sci., 103, 18438–18443, 2006.; Houtekamer, P., Herschel, L., Mitchell, G., Buehner, M., Charron, M., Spacek, L., and Hansen, B.: Atmospheric Data Assimilation with an Ensemble Kalman Filter: Results with Real Observations, Mon. Weather Rev., 133, 604–620, 2005.; Hunt, B. R., Kostelich, E. J., and Szunyogh, I.: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter, Physica D, 230, 112–126, 2007.; Jackson, C. S., Sen, M. K., Huerta, G., Deng, Y., and Bowman, K. P.: Error Reduction and Convergence in Climate Prediction, J. Climate, 21, 6698–6709, doi:10.1175/2008JCLI2112.1, 2008.; Järvinen, H., Räisänen, P., Laine, M., Tamminen, J., Ilin, A., Oja, E., Solonen, A., and Haario, H.: Estimation of ECHAM5 climate model closure parameters with adaptive MCMC, Atmos. Chem. Phys., 10, 9993–10002,

 

Click To View

Additional Books


  • Obliquely Propagating Large Amplitude So... (by )
  • The Effect of Volatile Bubble Growth Rat... (by )
  • Comparison Between Local Ensemble Transf... (by )
  • On Statistical Equilibrium in Helical Fl... (by )
  • Nonlinear Compressional Electromagnetic ... (by )
  • Approximate Asymptotic Integration of a ... (by )
  • Instability and Change Detection in Expo... (by )
  • Fractal Dimension of Lightning Discharge... (by )
  • Searching for Determinism in Observed Da... (by )
  • Anomalies of Critical State in Fracturin... (by )
  • Geometric Aspects of Hf Driven Langmuir ... (by )
  • Error Growth and Dynamical Vectors Durin... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.