World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Brief Communication a Statistical Validation for the Cycles Found in Air Temperature Data Using a Morlet Wavelet-based Method : Volume 17, Issue 3 (20/05/2010)

By Nicolay, S.

Click here to view

Book Id: WPLBN0003984565
Format Type: PDF Article :
File Size: Pages 4
Reproduction Date: 2015

Title: Brief Communication a Statistical Validation for the Cycles Found in Air Temperature Data Using a Morlet Wavelet-based Method : Volume 17, Issue 3 (20/05/2010)  
Author: Nicolay, S.
Volume: Vol. 17, Issue 3
Language: English
Subject: Science, Nonlinear, Processes
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Historic
Publication Date:
2010
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Mabille, G., Erpicum, M., Fettweis, X., & Nicolay, S. (2010). Brief Communication a Statistical Validation for the Cycles Found in Air Temperature Data Using a Morlet Wavelet-based Method : Volume 17, Issue 3 (20/05/2010). Retrieved from http://hawaiilibrary.net/


Description
Description: Département de mathématique, University of Liège, Liège, Belgium. Recently, new cycles, associated with periods of 30 and 43 months, respectively, have been observed by the authors in surface air temperature time series, using a wavelet-based methodology. Although many evidences attest the validity of this method applied to climatic data, no systematic study of its efficiency has been carried out. Here, we estimate confidence levels for this approach and show that the observed cycles are significant. Taking these cycles into consideration should prove helpful in increasing the accuracy of the climate model projections of climate change and weather forecast.

Summary
Brief communication A statistical validation for the cycles found in air temperature data using a Morlet wavelet-based method

Excerpt
Allen, M. R. and Robertson, A. W.: Distinguishing modulated oscillations from coloured noise in multivariate datasets, Clim. Dynam., 12, 775–784, 1996.; Arneodo, A., Argoul, F., Elezgaray, J., and Grasseau, G.: Wavelet transform analysis of fractals: application to nonequilibrium phase transitions, in: Nonlinear Dynamics, edited by: Turchetti, G., World Scientific, Singapore, 1988.; Daubechies, I.: Ten lectures on wavelets, SIAM, Philadelphia, 1992.; Freysz, E., Pouligny, B., Argoul, F., and Arneodo, A.: Optical wavelet transform of fractal aggregates, Phys. Rev. Lett., 64, 745–748, 1990.; Huang, N. E., Shen, Z., Long, S. R., Wu, M. L. C., Shih, H. H., Zheng, Q. N., Yen, N. C., Tung, C. C., and Liu, H. H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. R. Soc. Lon. Ser. A, 454, 903–995, 1998.; Kalney, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K.C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.: The NCEP/NCAR 40-Year reanalysis project, B. Am. Meteorol. Soc., 104, 437–471, 1996.; Mabille, G. and Nicolay, S.: Multi-year cycles observed in air temperature data and proxy series, Eur. Phys. J.-Spec. Top., 174, 135–145, 2009.; Mann, M. E. and Lees, J.: Robust estimation of background noise and signal detection, Climatic Change, 33, 409–445, 1996.; Mann, M. E., Rutherford, S., Wahl, E., and Ammann, C.: Robustness of proxy-based climate field reconstruction methods, J. Geophys. Res., 112, D12109, doi:10.1029/2006JD008272, 2007.; Maraun, D. and Kurths, J.: Cross wavelet analysis: significance testing and pitfalls, Nonlin. Processes Geophys., 11, 505–514, doi:10.5194/npg-11-505-2004, 2004.; Matyasovszky, I.: Improving the methodology for spectral analysis of climatic time series, Theor. Appl. Climatol., doi:10.1007/s00704-009-0212-z, in press, 2010.; Nicolay, S., Mabille, G., Fettweis, X., and Erpicum, M.: 30 and 43 months period cycles found in air temperature time series using the Morlet wavelet method, Clim. Dynam., 33, 1117–1129, 2009.; Percival, D. B. and Walden, A. T.: Spectral analysis for physical applications, Cambridge University Press, Cambridge, 1993.; Palu$\check{\rm s}$, M. and Novotná, D.: Quasi-biennial oscillations extracted from the monthly NAO index and temperature records are phase-synchronized, Nonlin. Processes Geophys., 13, 287–296, doi:10.5194/npg-13-287-2006, 2006.; Smith, D., Cusack, S., Colman, A., Folland, C., Harris, G., and Murphy, J.: Improved surface temperature prediction for the coming decade from global climate model, Science, 317, 796–799, 2007.

 

Click To View

Additional Books


  • Using Magnetic Fluids to Simulate Convec... (by )
  • Spectral Diagonal Ensemble Kalman Filter... (by )
  • Continuous Dynamic Assimilation of the I... (by )
  • On the Scaling Characteristics of Observ... (by )
  • Recurrent Frequency-size Distribution of... (by )
  • The Effect of Upstream Turbulence and It... (by )
  • Euler Potentials for the Mhd Kamchatnov-... (by )
  • Heliospheric Pick-up Ions Influencing Th... (by )
  • Complex-network Description of Seismicit... (by )
  • Performance of the Arpa-smr Limited-area... (by )
  • Dynamical Behavior of U-shaped Double La... (by )
  • Resonant-to-nonresonant Transition in El... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.