World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Conditional Nonlinear Optimal Perturbations of the Double-gyre Ocean Circulation : Volume 15, Issue 5 (10/10/2008)

By Terwisscha Van Scheltinga, A. D.

Click here to view

Book Id: WPLBN0003985603
Format Type: PDF Article :
File Size: Pages 8
Reproduction Date: 2015

Title: Conditional Nonlinear Optimal Perturbations of the Double-gyre Ocean Circulation : Volume 15, Issue 5 (10/10/2008)  
Author: Terwisscha Van Scheltinga, A. D.
Volume: Vol. 15, Issue 5
Language: English
Subject: Science, Nonlinear, Processes
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Dijkstra, H. A., & Terwisscha Van Scheltinga, A. D. (2008). Conditional Nonlinear Optimal Perturbations of the Double-gyre Ocean Circulation : Volume 15, Issue 5 (10/10/2008). Retrieved from

Description: Institute for Marine and Atmospheric research Utrecht, Department of Physics and Astronomy, Utrecht University, Utrecht, The Netherlands. In this paper, we study the development of finite amplitude perturbations on linearly stable steady barotropic double-gyre flows in a rectangular basin using the concept of Conditional Nonlinear Optimal Perturbation (CNOP). The CNOPs depend on a time scale of evolution te and an initial perturbation threshold δ. Under symmetric wind forcing, a perfect pitchfork perturbation occurs in the model. The CNOPs are determined for all linearly stable states and the time evolution of the CNOPs is studied. It is found that the patterns of the CNOPs are similar to those of the non-normal modes for small te and approach those of the normal modes for larger te. With slightly asymmetric winds, an imperfect pitchfork occurs in the model. Indications are found that the time evolution of the CNOPs is related to the value of the dissipation function of the underlying steady state.

Conditional nonlinear optimal perturbations of the double-gyre ocean circulation

Crisciani, F. and Mosetti, R.: On the stability of wind-driven flows in oceanic basins, J. Phys. Oceanogr., 20, 1787–1790, 1990.; Crisciani, F., Cavallini, F., and Mosetti, R.: Stability of analytical solutions of Stommel-Veronis ocean circulation models, J. Phys.\ Oceanogr., 24, 155–158, 1994.; Crisciani, F., Cavallini, F., and Mosetti, R.: Nonlinear asymptotic stability of Munk's solution of the general circulation problem, J. Phys. Oceanogr., 25, 1723–1729, 1995.; Dijkstra, H A.: Nonlinear Physical Oceanography: A Dynamical Systems Approach to the Large Scale Ocean Circulation and El Niño., Springer, Dordrecht, the Netherlands, 2nd edn., 2005.; Dijkstra, H A. and De~Ruijter, W. P M.: Finite Amplitude Stability of the Wind-Driven Ocean Circulation, Geophys. Astrophys. Fluid Dynam., 83, 1–31, 1996.; Dijkstra, H A. and Katsman, C A.: Temporal variability of the Wind-Driven Quasi-geostrophic Double Gyre Ocean Circulation: Basic Bifurcation Diagrams, Geophys. Astrophys. Fluid Dyn., 85, 195–232, 1997.; Farrell, B F. and Ioannou, P J.: Generalized stability theory. I: Autonomous opertors, J. Atmos. Sci., 53, 2025–2040, 1996.; Gill, P., Wright, M., and Murray, W.: Practical Optimization, Academy Press, 1981.; Gill, P., Saunders, M., and Wright, M.: Users guide for NPSOL(Version 4.0), Tech. Rep. SOL 86-2, Department of Operations Research, Stanford University, 1986.; Jiang, S., Jin, F.-F., and Ghil, M.: Multiple equilibria and aperiodic solutions in a wind-driven double-gyre, shallow-water model, J. Phys.\ Oceanogr., 25, 764–786, 1995.; Joseph, D D.: Stability of Fluid Motions: Vol. I. and Vol. II., Springer-Verlag, Berlin-Heidelberg, Germany, 1976.; Moore, A M.: Wind-induced variability of ocean gyres, Dyn. Atmos. Oceans, 29, 335–364, 1999.; Moore, A M., Perez, C L., and Zvala-Garay, J.: A non-normal view of the wind-driven ocean circulation, J. Phys. Oceanogr., 32, 2681–2705, 2002.; Mu, M. and Zhang, Z.: Conditional Nonlinear Optimal Perturbations of a two-dimensional quasi-geostrophic model, J. Atmos. Sci., 63, 1587–1604, 2006.; Mu, M., Duan, W. S., and Wang, B.: Conditional nonlinear optimal perturbation and its applications, Nonlin. Processes Geophys., 10, 493–501, 2003.; Mu, M., Liang, S., and Dijkstra, H A.: The sensitivity and stability of the ocean's thermohaline circulation to finite amplitude perturbations, J.\ Phys. Oceanogr., 34, 2305–2315, 2004.; Nadiga, B T. and Luce, B.: Global bifurcation of Shilñikov type in a double-gyre model, J. Phys. Oceanogr., 31, 2669–2690, 2001.; Pedlosky, J.: Geophysical Fluid Dynamics. 2nd Edn, Springer-Verlag, New York, 1987.; Simonnet, E. and Dijkstra, H A.: Spontaneous generation of low-frequency modes of variability in the wind-driven ocean circulation, J. Phys. Oceanogr., 32, 1747–1762, 2002.; Simonnet, E., Ghil, M., and Dijkstra, H.: Homoclinic bifurications in the quasi-geostrophic double-gyre circulation, J. Mar. Res., 63, 931–956, 2005.; Terwisscha van Scheltinga, A. D. and Dijkstra, H. A.: Nonlinear data-assimilation using implicit models, Nonlin. Processes Geophys., 12, 515–525, 2005.


Click To View

Additional Books

  • The Cosmo-leps Mesoscale Ensemble System... (by )
  • Nonstationary Time Series Prediction Com... (by )
  • Inversion of the Western Pacific Subtrop... (by )
  • Insight Into Earthquake Sequencing: Anal... (by )
  • A Model for Aperiodicity in Earthquakes ... (by )
  • Remarks on Nonlinear Relation Among Phas... (by )
  • Scaling Collapse and Structure Functions... (by )
  • Number-average Size Model for Geological... (by )
  • Using Sparse Regularization for Multires... (by )
  • The Formation of Relativistic Plasma Str... (by )
  • The Choice of Optimal Discrete Interacti... (by )
  • Statistical Inference from Atmospheric T... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.