World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Parameter Variations in Prediction Skill Optimization at Ecmwf : Volume 20, Issue 6 (22/11/2013)

By Ollinaho, P.

Click here to view

Book Id: WPLBN0003985988
Format Type: PDF Article :
File Size: Pages 10
Reproduction Date: 2015

Title: Parameter Variations in Prediction Skill Optimization at Ecmwf : Volume 20, Issue 6 (22/11/2013)  
Author: Ollinaho, P.
Volume: Vol. 20, Issue 6
Language: English
Subject: Science, Nonlinear, Processes
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Leutbecher, M., Bechtold, P., Laine, M., Solonen, A., Järvinen, H., Ollinaho, P., & Haario, H. (2013). Parameter Variations in Prediction Skill Optimization at Ecmwf : Volume 20, Issue 6 (22/11/2013). Retrieved from

Description: Finnish Meteorological Institute, Erik Palménin aukio 1, Helsinki, Finland. Algorithmic numerical weather prediction (NWP) skill optimization has been tested using the Integrated Forecasting System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF). We report the results of initial experimentation using importance sampling based on model parameter estimation methodology targeted for ensemble prediction systems, called the ensemble prediction and parameter estimation system (EPPES). The same methodology was earlier proven to be a viable concept in low-order ordinary differential equation systems, and in large-scale atmospheric general circulation models (ECHAM5). Here we show that prediction skill optimization is possible even in the context of a system that is (i) of very high dimensionality, and (ii) carefully tuned to very high skill. We concentrate on four closure parameters related to the parameterizations of sub-grid scale physical processes of convection and formation of convective precipitation. We launch standard ensembles of medium-range predictions such that each member uses different values of the four parameters, and make sequential statistical inferences about the parameter values. Our target criterion is the squared forecast error of the 500 hPa geopotential height at day three and day ten. The EPPES methodology is able to converge towards closure parameter values that optimize the target criterion. Therefore, we conclude that estimation and cost function-based tuning of low-dimensional static model parameters is possible despite the very high dimensional state space, as well as the presence of stochastic noise due to initial state and physical tendency perturbations. The remaining question before EPPES can be considered as a generally applicable tool in model development is the correct formulation of the target criterion. The one used here is, in our view, very selective. Considering the multi-faceted question of improving forecast model performance, a more general target criterion should be developed. This is a topic of ongoing research.

Parameter variations in prediction skill optimization at ECMWF

Buizza, R., Miller, M., and Palmer, T. N.: Stochastic representation of model uncertainties in the ECMWF ensemble prediction system, Q. J. R. Meteorol. Soc., 125, 2887–2908, 1999.; Buizza, R., Leutbecher, M., and Isaksen, L.: Potential use of an ensemble of analyses in the ECMWF ensemble prediction system, Q. J. R. Meteorol. Soc., 134, 2051–2066, 2008.; de Rooy, W. C., Bechtold, P., Fröhlich, K., Hohenegger, C., Jonker, H., Mironov, S., Teixeira, J., and Yano, J.-I.: Entrainment and detrainment in cumulus convection: an overview, Q. J. R. Meteorol. Soc., 139, 1–19, doi:10.1002/qj.1959, 2013.; Isaksen, L., Bonavita, M., Buizza, R., Fisher, M., Haseler, J., Leutbecher, M., and Raynaud, L.: Ensemble of Data Assimilations at ECMWF, ECMWF Tech. Mem., 636, 46 pp., 2010.; Järvinen, H., Laine, M., Solonen, A., and Haario, H.: Ensemble prediction and parameter estimation system: the concept, Q. J. R. Meteorol. Soc., 138, 281–288, doi:10.1002/qj.923, 2012.; Kivman, G. A.: Sequential parameter estimation for stochastic systems, Nonlin. Processes Geophys., 10, 253–259, doi:10.5194/npg-10-253-2003, 2003.; Laine, M., Solonen, A., Haario, H., and Järvinen, H.: Ensemble prediction and parameter estimation system: the method, Q. J. R. Meteorol. Soc., 138, 289–297, doi:10.1002/qj.922, 2012.; Lorenz, E. N.: Predictability: A problem partly solved. Proceedings of the Seminar on Predictability, Vol. I, ECMWF, Reading, UK, 1–18, available at:, 1995.; Ollinaho, P., Järvinen, H., Laine, M., Solonen, A., and Haario, H.: NWP model forecast skill optimization via closure parameter variations, Q. J. R. Meteorol. Soc., 139, 1520–1532, doi:10.1002/qj.2044, 2013.; Bechtold, P., Köhler, M., Jung, T., Leutbecher, M., Rodwell, M., Vitart, F., and Balsamo, G.: Advances in predicting atmospheric variability with the ECMWF model: From synoptic to decadal time-scales, Q. J. R. Meteorol. Soc., 134, 1337–1351, doi:10.1002/qj.289, 2008.; Berner, J., Shutts, G. J., Leutbecher, M., and Palmer, T. N.: A spectral stochastic kinetic energy backscatter scheme and its impact on flow-dependent predictability in the ECMWF ensemble prediction system, J. Atmos. Sci., 66, 603–626, 2009.; Palmer, T. N., Buizza, R., Doblas-Reyes, F., Jung, T., Leutbecher, M., Shutts, G. J., Steinheimer, M., and Weisheimer, A.: Stochastic parameterization and model uncertainty, ECMWF Tech. Memo., 598, 42 pp., 2009.; Roeckner, E., Bäuml, G., Bonaventura, L., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S., Kirchner, I., Kornblueh, L., Manzini, E., Rhodin, A., Schlese, U., Schulzweida, U., and Tompkins, A.: The atmospheric general circulation model ECHAM5, Part I Model Description, Tech. Rep. No. 349, Max-Planck-Institut fur Meteorologie, 2003.; Rougier, J.: Intractable and unsolved: some thoughts on statistical data assimilation with uncertain static parameters, Phil. Trans. R. Soc. A, 371, 20120297, 10.1098/rsta.2012.0297, 2013.; Simmons, A. J. and Hollingsworth, A.: Some aspects of the improvement in skill of numerical weather prediction, Q. J. R. Meteorol. Soc., 128, 647–677, doi:10.1256/003590002321042135, 2002.; Tiedtke, M.: A comprehensive mass flux scheme for cumulus parameterization in large-scale models, Mon. Weather Rev., 117, 1779–1800, 1989.; van Leeuwen, P. J.: A Variance-Minimizing Filter for Large-Scale Applications, Mon. Weather Rev., 131, 2071–2084, 2.0.CO;2>doi:10.1


Click To View

Additional Books

  • Investigation of Correlation of the Vari... (by )
  • Electron Acoustic Solitons in the Earth'... (by )
  • Earthquake Simulations with Time-depende... (by )
  • Increasing the Horizontal Resolution of ... (by )
  • The Nonlinear Coupling of Electromagneti... (by )
  • Oscillations in a Simple Climate–vegetat... (by )
  • Identifying Non-normal and Lognormal Cha... (by )
  • Comprehensive Analysis of Tornado Statis... (by )
  • Fractal Analysis for the Ulf Data During... (by )
  • A New Theoretical Paradigm to Describe H... (by )
  • Scaling of Peak Flows with Constant Flow... (by )
  • Enso's Non-stationary and Non-gaussian C... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.