World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Scale-dependency of Surface Fluxes in an Atmospheric Mesoscale Model: Effect of Spatial Heterogeneity in Atmospheric Conditions : Volume 15, Issue 6 (09/12/2008)

By Hong, Jinkyu

Click here to view

Book Id: WPLBN0003986614
Format Type: PDF Article :
File Size: Pages 11
Reproduction Date: 2015

Title: Scale-dependency of Surface Fluxes in an Atmospheric Mesoscale Model: Effect of Spatial Heterogeneity in Atmospheric Conditions : Volume 15, Issue 6 (09/12/2008)  
Author: Hong, Jinkyu
Volume: Vol. 15, Issue 6
Language: English
Subject: Science, Nonlinear, Processes
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Historic
Publication Date:
2008
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Hong, J., & Kim, J. (2008). Scale-dependency of Surface Fluxes in an Atmospheric Mesoscale Model: Effect of Spatial Heterogeneity in Atmospheric Conditions : Volume 15, Issue 6 (09/12/2008). Retrieved from http://hawaiilibrary.net/


Description
Description: Global Environment Lab, Department of Atmospheric Sciences, Yonsei University, Seoul 134-032, Korea. We examined the nonlinear effect of spatial heterogeneity in atmospheric conditions on the simulation of surface fluxes in the mesoscale model, MM5 by testing their scale-invariance from a tower footprint to regional scales. The test domain was a homogeneous shortgrass prairie in the central part of the Tibetan Plateau with an eddy-covariance flux tower at the center. We found that the spatial variability resulting from changing distribution of clouds and precipitation in the model domain affected radiative forcing at the ground surface, thereby altering the partitioning of surface fluxes. Consequently, due to increasing spatial variability in atmospheric conditions, the results of MM5 did not produce convergent estimates of surface fluxes with increasing grid sizes. Our finding demonstrates that an atmospheric model can underestimate surface fluxes in regional scale not necessarily due to intrinsic model inaccuracy (e.g., inaccurate parameterization) but due to scale-dependent nonlinear effect of spatial variability in atmospheric conditions.

Summary
Scale-dependency of surface fluxes in an atmospheric mesoscale model: effect of spatial heterogeneity in atmospheric conditions

Excerpt
Avissar, R. and Pielke, R. A.: A Parameterization of Heterogeneous Land Surfaces for Atmospheric Numerical Models and Its Impact on Regional Meteorology, Mon. Weather Rev., 117, 2113–2136, 1989.; %Betts, A., Hong, S. and Pan, H.: Comparison of NCEP-NCAR Reanalysis with 1987 FIFE data, Mon. Weather Rev., 124, 1480-1489, 1996.; Baldocchi, D., Falge, E., Gu, L. H., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel, W., Paw U, K. T., Pilegaard, K., Schmid, H. P., Valentini, R., Verma, S., Vesala, T., Wilson, K., and Wofsy, S.: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities, Bull. Am. Meteorol. Soc., 82, 2415–2434, 2001.; Baldocchi, D.D., Krebs, T. and Leclerc, M. Y.: Wet/dry Daisyworld: a conceptual tool for quantifying the spatial scaling of heterogeneous landscapes and its impact on the subgrid variability of energy fluxes, Tellus, 57B(3), 175–188, 2005. %; Bertoldi, G., Kustas, W. P., and Albertson, J. D.: Estimating spatial variability in atmospheric properties over remotely sensed land surface conditions, J. Appl. Meteorol. Clim., 47, 2147–2165, 2008.; Betts, A., Chen, F., Mitchell, K., and Janjic, Z.: Assessment of land surface and boundary layer models in two operational versions of the Eta model using FIFE data, Mon. Weather Rev., 125, 2896–2915, 1997.; Bonan, G. B., Levis, S., Kergoat, L., and Oleson, K. W.: Landscapes as patches of plant functional types: An integrating concept for climate and ecosystem models, Global Bio. Cy., 16, 1021, doi:10.1029/2000GB001360, 2002.; Brotzge, J. A.: A Two-Year comparison of the surface water and energy budgets between two OASIS sites and NCEP-NCAR reanalysis data, J. Hydrometeo., 5, 311–326, 2004.; Kaimal, J. and Finnigan, J.: Atmospheric Boundary Layer Flows: Their structure and measurement, Oxford University Press, New York, 1994.; Chen, F. and Dudhia, J.: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity, Mon. Weather Rev., 129, 569–585, 2001a.; Chen, F. and Dudhia, J.: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system, Part II: Preliminary model validation, Mon. Weather Rev., 129, 587–604, 2001b.; Choi, T., Hong, J., Kim, J., Lee, H., Asanuma, J., Ishikawa, H., Tsukamoto, O., Gao, Z., Ma, Y., Ueno, K., Wang, J., Koike, T., and Yasunari, T.: Turbulent exchange of heat, water vapor, and momentum over a Tibetan prairie by eddy covariance and flux variance measurements, J. Geoph. Res., 109, D21106, doi:10.1029/2004JD004767, 2004. %; %Denning, A. S., Nicholls, M., Prihodko, L., Baker, I., Vidale, P.-L., Davis, K., and Bakwin, P.: Simulated variations in atmospheric CO2 over a Wisconsin forest using a coupled ecosystem-atmosphere model, Global Change Biol., 9, 1241-1250, 2003.; Dolman, A. J., Noilhan, J., Durand, P., Sarrat, C., Brut, A., Piguet, B., Butet, A., Jarosz, N., Brunet, Y., Loustau, D., Lamaud, E., Tolk, L., Ronda, R., Miglietta, F., Gioli, B., Magliulo, V., Esposito, M., Gerbig, C., Körner, S., Glademard, P., Ramonet, M., Ciais, P., Neininger, B., Hutjes, R. W. A., Elbers, J. A., Macatangay, R., Schrems, O., Pérez-Landa, G., Sanz, M. J., Scholz, Y., Facon, G., Ceschia, E., and Beziat, P.: The CarboEurope regional experiment strategy, Bull. Am. Meteorol. Soc., 87, 1367–1379, 2006.; Gutman, G. and Ignatov, A.: The derivation of the green vegetation fraction from NOAA/AVHRR for use in numerical weather prediction models, Int. J. Remote Sens., 19, 1533–1543, 1998.; Henderson-Sellers, A., Dickinson, R. E., Turbidge, T. B., Kennedy, P. J., McGuffiel, K., and Pitman, A. J. : Tropical deforestation: Modeling local to regional scale climate change, J. Geophys. Res., 98, 7289–7315, 1993.; Hong, S.-Y.

 

Click To View

Additional Books


  • Aggregation and Sampling in Deterministi... (by )
  • Correlations Between Climate Network and... (by )
  • Energy Transformations and Dissipation o... (by )
  • Implications of Model Error for Numerica... (by )
  • New Results of Investigations of Whistle... (by )
  • Testing and Modelling Autoregressive Con... (by )
  • A Barnes-hut Scheme for Simulating Fault... (by )
  • Application of Local Singularity in Pros... (by )
  • Distinguishing the Effects of Internal a... (by )
  • An Extension of Conditional Nonlinear Op... (by )
  • Charged Dust and Shock Phenomena in the ... (by )
  • Head-on Collision of Two Solitary Waves ... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.