World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Conjugate Flows and Amplitude Bounds for Internal Solitary Waves : Volume 16, Issue 2 (04/03/2009)

By Makarenko, N. I.

Click here to view

Book Id: WPLBN0003986617
Format Type: PDF Article :
File Size: Pages 10
Reproduction Date: 2015

Title: Conjugate Flows and Amplitude Bounds for Internal Solitary Waves : Volume 16, Issue 2 (04/03/2009)  
Author: Makarenko, N. I.
Volume: Vol. 16, Issue 2
Language: English
Subject: Science, Nonlinear, Processes
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Maltseva, J. L., Kazakov, A. Y., & Makarenko, N. I. (2009). Conjugate Flows and Amplitude Bounds for Internal Solitary Waves : Volume 16, Issue 2 (04/03/2009). Retrieved from

Description: Lavrentyev Institute of Hydrodynamics 630090, Novosibirsk, Russia. Amplitude bounds imposed by the conservation of mass, momentum and energy for strongly nonlinear waves in stratified fluid are considered. We discuss the theoretical scheme which allows to determine broadening limits for solitary waves in the terms of a given upstream density profile. Attention is focused on the continuously stratified flows having multiple broadening limits. The role of the mean density profile and the influence of fine-scale stratification are analyzed.

Conjugate flows and amplitude bounds for internal solitary waves

Amick, C. and Turner, R. E. L.: A global theory of internal solitary waves in two-fluid system, Trans. Amer. Math. Soc., 298, 431–484, 1986.; Benjamin, T. B.: Internal waves of finite amplitude and permanent form, J.Fluid Mech., 25, 241–270, 1966.; Benjamin, T. B.: A unified theory of conjugate flows, Philos. Trans. Roy. Soc. London A., 269, 587–643, 1971.; Benjamin, T B.: Impulse, flow force and variational principles, IMA J. Appl. Math., 32, 3–68, 1984.; Benney, D. J. and Ko, D. R. S.: The propagation of long large amplitude internal waves, Stud. Appl. Math., 59, 187–199, 1978.; Choi, W. and Camassa, R.: Fully nonlinear internal waves in a two-fluid system, J.Fluid Mech., 396, 1–36, 1999.; Derzho, O. G. and Grimshaw, R.: Solitary waves with a vortex core in a shallow layer of stratified fluid, Phys. Fluids, 9, 3378–3385, 1997.; Dias, F. and Vanden-Broeck, J.-M.: On internal fronts, J Fluid. Mech., 479, 145–154, 2003.; Duda, T. F., Lynch, J. F., Irish, J. D., Beardsley, J. D., Ramp, S. R., et al.: Internal tide and nonlinear wave behavior in the continental slope in the northern South China Sea, IEEE J. Ocean Eng., 29, 1105–1131, 2004.; Evans, W. A. B. and Ford, M. J.: An integral equation approach to internal (2-layer) solitary waves, Phys. Fluids, 8, 2032–2047, 1996.; Fedorov, K. N.: The thermohaline finestructure of the ocean, Pergamon marine series, Vol 2. Pergamon, Oxford, 1978.; Funakoshi, M. and Oikawa, M.: Long internal waves of large amplitude in a two-layer fluid, J. Phys. Soc. Japan, 55, 128–144, 1986.; Grimshaw, R. H. L. and Pullin, D. I.: Extreme interfacial waves, Phys. of Fluids, 29, 2802–2807, 1986.; Grue, J., Jensen, A., Rus\aas, P.-O., and Sveen, J. K.: Breaking and broadening of internal solitary waves, J.Fluid Mech., 413, 181–217, 2000.; Helfrich, K. R. and Melville, W. K.: Long nonlinear internal waves, Annu. Rev. Fluid Mech.,~38,~395–425,~2006.; Holyer, J. Y.: Large amplitude progressive interfacial waves, J. Fluid Mech, 93, 433–448, 1979.; Kalle, K.: Zur Frage der inneren thermishe Unruhe des Meers, Deutsch. Hydrogr. Z., 6, 145–170, 1953.; Lamb, K. G. and Wan, B.: Conjugate flows and flat solitary waves for a continuously stratified fluid, Phys. Fluids, 10, 2061–2079, 1998.; Lamb, K. G.: Conjugate flows for a three-layer fluid, Phys. Fluids, 12, 2169–2185, 2000.; Lamb, K. G. and Wilkie, K.: Conjugate flows with trapped cores, Phys. Fluids, 16, 4685–4695, 2004.; Makarenko, N. I.: Smooth bore in a two-layer fluid, Int. Ser. Numerical Math. 106, 195–204, 1992.; Makarenko, N. I.: Conjugate flows and smooth bores in a weakly stratified fluid, J. Appl. Mech. Techn. Phys., 40, 249–257, 1999.; Maltseva, J. L.: Limiting forms of internal solitary waves, JOMAE Trans. ASME, 125, 76–79, 2003.; Meiron, D. I. and Saffman, P. G.: Overhanding interfacial gravity waves of large amplitude, J. Fluid Mech., 129, 213–218, 1983.; Mirie, R. M. and Pennel, S. A.: Internal solitary waves in a two-fluid system, Phys. Fluids A, 1, 986–991, 1989.; Miyata, M.: An internal solitary wave of large amplitude, La Mer, 23, 43–48, 1985.; Ovsyannikov, L. V., Makarenko, N. I., Nalimov, V. I., et al.: Nonlinear Problems of the Theory of Surface and Internal Waves, Nauka, Novosibirsk , 1985 (in Russian).; Rus\aas, P.-O. and Grue, J.: Solitary waves and conjugate flows in a three-layer fluid, Eur. J. Mech. B/Fluids, 21, 185–206, 2002.; Saffman, P. G. and Yuen, H. C.: Finite-amplitude interfacial waves in the presence of a current, J. Fluid Mech., 123, 459–476, 1982.; Scotti, A. and Pineda, J.: Observation of very large and steep internal waves of elevation near the Massachusets coast, Geophys. Res. Lett., 31, L22307, doi:10.1029/2004GL021052, 2004.; Turner, R. E. L. and Vanden-Broeck, J.-M.: Limiting configuration of interfacial solitary waves, Phys. Fluids, 29, 372–375, 1986.; Turner, R. E. L. and Vanden-Broeck, J.-M.: Broadening of interfacial solitary waves, Phys. Fluids, 31, 2486–2490, 1988.; Yih, C. S.: Stratified flows, Academic Press


Click To View

Additional Books

  • Characterizing Water Fingering Phenomena... (by )
  • Comment on Multivariate Non-normally Dis... (by )
  • Substorm Classification with the Windmi ... (by )
  • Anisotropic Scaling Features and Complex... (by )
  • North Atlantic Climate Variability in Co... (by )
  • The Small Amplitude of Density Turbulenc... (by )
  • Nonlinear Time Series Analysis of Geomag... (by )
  • Wave Turbulence in Magnetized Plasmas : ... (by )
  • Electron Acoustic Solitons in the Presen... (by )
  • On the Earth’s Magnetic Field and the Ha... (by )
  • Facies Recognition Using Wavelet Based F... (by )
  • Lagrangian Drifter Paths and Length Scal... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.