World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Application of a Goy Model to Atmospheric Boundary Layer Data : Volume 16, Issue 5 (12/10/2009)

By Vindel, J. M.

Click here to view

Book Id: WPLBN0003986897
Format Type: PDF Article :
File Size: Pages 8
Reproduction Date: 2015

Title: Application of a Goy Model to Atmospheric Boundary Layer Data : Volume 16, Issue 5 (12/10/2009)  
Author: Vindel, J. M.
Volume: Vol. 16, Issue 5
Language: English
Subject: Science, Nonlinear, Processes
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Yagüe, C., & Vindel, J. M. (2009). Application of a Goy Model to Atmospheric Boundary Layer Data : Volume 16, Issue 5 (12/10/2009). Retrieved from

Description: Área de Modelización, Agencia Estatal de Meteorología (AEMET), Madrid, Spain. This article analyzes the possibility of applying a GOY theoretical model to atmospheric boundary layer data. Bearing this in mind, relative scaling exponents of velocity structure functions are used to compare the model with the data under study. In the model, these exponents are set based on two parameters (q and Δ), which are appropriate to define the model that better features a certain atmospheric state.

From these scaling exponents, the gap between 2-D and 3-D turbulence is observed in the model, depending on the fact that Δ is higher or lower than unity, respectively.

Atmospheric data corresponding to very different states of stratification stability have been analyzed. For convective or near-neutral situations (usually associated to 3-D turbulence), it is possible to find parameters q and Δ to define a model that fits the measured data. More stable situations can be featured by GOY models with higher values of Δ. However, it is clear that it is impossible to represent nocturnal situations of strong stable stratification (with a more similar behaviour to 2-D) with this type of model.

Application of a GOY model to atmospheric boundary layer data

Benzi, R., Ciliberto, S., Tripiccione, R., Baudet, C., Massaioli, F., and Succi, S.: Extended self-similarity in turbulent flows, Phys. Rev. E, 48, 29–36, 1993.; Bowman, J. C., Doering, C. R., Eckhardt, B., Davoudi, J., Roberts, M., and Schumacher, J.: Links between dissipation, intermittency and helicity in the GOY model revisited, Physica D, 218, 1–10, 2006.; Constantin, P., Levant, B., and Titi, E. S.: A note on the regularity of inviscid shell models of turbulence, Phys. Rev. E, 75(1), 016304, 1–10, 2007.; Daniel, W. B. and Rutgers, M. A.: Intermittency in forced two-dimensional turbulence, arXiv:nlin/0005008v1 [nlin.CD], 3 May 2000.; Ditlevsen, P. D.: Temporal intermittency and cascades in shell models of turbulence, Phys. Rev. E, 54(1), 985–988, 1996.; Cuxart, J., Yagüe, C., Morales, G., Terradellas, E., Orbe, J., Calvo, J., Fernández, A., Soler, M. R., Infante, C., Buenestado, P., Espinalt, A., Joergensen, H. E., Rees, J. M., Vila, J., Redondo, J. M., Cantalapiedra, I. R., and Conangla, L.: Stable Atmospheric Boundary-Layer Experiment in Spain (SABLES 98): A Report, Bound.-Lay. Meteorol., 96(3), 337–370, 2000.; Ditlevsen, P. D. and Mogensen, I. A.: Cascades and statistical equilibrium in shell models of turbulence, Phys. Rev. E, 53(5), 4785–4793, 1996.; Ditlevsen, P. D.: Turbulence and climate dynamics, Print J{&}R Frydenberg A/S, Copenhagen, 349 pp., 2004.; Frisch, U.: Turbulence, England: Cambridge University Press, 296 pp., 1995.; Giuliani, P., Jensen, M. H., and Yakhot, V.: Critical dimension in shell model turbulence, Phys. Rev. E, 65(3), 036305, doi:10.1103/PhysRevE.65.036305, 2002.; Gledzer, E. B.: System of hydrodynamic type admitting two quadratic integrals of motion, Soviet Physics Doklady, 18, 216–217, 1973.; Kadanoff, L., Lohse, D., Wang, J., and Benzi, R.: Scaling and dissipation in the GOY shell model, Phys. Fluids, 7(3), 617–629, 1995.; Kaimal, J. C. and Finnigan, J. J.: Atmospheric Boundary Layer Flows: Their Structure and Measurements, Oxford University Press, New York, 289 pp., 1994.; Kolmogorov, A. N.: Dissipation of energy in locally isotropic turbulence, C. R. Acad. Sci. USSR, 32, 16–18, 1941.; Kraichnan, R. H.: Inertial ranges in two-dimensional turbulence, Phys. Fluids, 10(7), 1417–1423, 1967.; Kraichnan, R. H.: Inertial-range transfer in two- and three-dimensional turbulence, J. Fluid Mech., 47(3), 525–535, 1971.; Paret, J. and Tabeling, P.: Intermittency in the two-dimensional inverse cascade of energy: experimental observations, Phys. Fluids, 10, 3126–3136, 1998.; Pisarenko, D., Biferale, L., Courvoisier, D., Frisch, U., and Vergassola, M.: Further results on multifractality in shell models, Phys. Fluids A-Fluid, 5(10), 2533–2538, 1993.; San Jose, R., Casanova, J. L., Viloria, R. E., and Casanova, J.: Evaluation of the Turbulent Parameters of the Unstable Surface Boundary Layer outside Businger's Range, Atmos. Environ., 19, 1555–1461, 1985.; Smith, L. M. and Yakhot, V.: Condensation and small-scale structure generation in a random force driven 2D turbulence, Phys. Rev. Lett., 71, 352–355, 1993.; Stull, R. B.: An Introduction to Boundary Layer Meteorology, Atmospheric Sciences Library, Kluwer Academic Publishers, 666 pp., 1988.; Vindel, J. M., Yagüe, C., and Redondo, J. M.: Structure function analysis and intermittency in the atmospheric boundary layer, Nonlin. Processes Geophys., 15, 915–929, 2008.; Yagüe, C., Viana, S., Maqueda, G., and Redondo, J. M.: Influence of stability on the flux-profile relationships for wind speed, $\phi_m$, and temperature, $\phi_h$, for the stable atmospheric boundary layer, Nonlin. Processes Geophys., 13, 185–203, 2006.; Yamada, M. and Ohkitani, K.: Lyapunov spectrum of a chaotic model of three-dimensional turbulence, J. Phys. Soc. Jpn., 56, 4210–4213, 1987.


Click To View

Additional Books

  • Trend Assessment: Applications for Hydro... (by )
  • Non-stationary Temporal Characterization... (by )
  • A Simple Conceptual Model of Abrupt Glac... (by )
  • Fluctuations in a Quasi-stationary Shall... (by )
  • Optimal Localized Observations for Advan... (by )
  • Density Representation of Long's Equatio... (by )
  • Multifractal Analysis of Mercury Inclusi... (by )
  • Nonlinear Fluctuation Analysis for a Set... (by )
  • Earthquake Statistics in a Block Slider ... (by )
  • Efficient Selective Filtering of Seismic... (by )
  • Spatiotemporal Characterization of Ensem... (by )
  • Modeling Stretched Solitary Waves Along ... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.