World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Divergence of Actual and Reference Evapotranspiration Observations for Irrigated Sugarcane with Windy Tropical Conditions : Volume 19, Issue 1 (29/01/2015)

By Anderson, R. G.

Click here to view

Book Id: WPLBN0003987176
Format Type: PDF Article :
File Size: Pages 17
Reproduction Date: 2015

Title: Divergence of Actual and Reference Evapotranspiration Observations for Irrigated Sugarcane with Windy Tropical Conditions : Volume 19, Issue 1 (29/01/2015)  
Author: Anderson, R. G.
Volume: Vol. 19, Issue 1
Language: English
Subject: Science, Hydrology, Earth
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Historic
Publication Date:
2015
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Zhang, H., Ayars, J. E., Wang, D., Anderson, R. G., & Tirado-Corbalá, R. (2015). Divergence of Actual and Reference Evapotranspiration Observations for Irrigated Sugarcane with Windy Tropical Conditions : Volume 19, Issue 1 (29/01/2015). Retrieved from http://hawaiilibrary.net/


Description
Description: USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Water Management Research Unit, Parlier, California, USA. Standardized reference evapotranspiration (ET) and ecosystem-specific vegetation coefficients are frequently used to estimate actual ET. However, equations for calculating reference ET have not been well validated in tropical environments. We measured ET (ETEC) using eddy covariance (EC) towers at two irrigated sugarcane fields on the leeward (dry) side of Maui, Hawaii, USA in contrasting climates. We calculated reference ET at the fields using the short (ET0) and tall (ETr) vegetation versions of the American Society for Civil Engineers (ASCE) equation. The ASCE equations were compared to the Priestley–Taylor ET (ETPT) and ETEC. Reference ET from the ASCE approaches exceeded ETEC during the mid-period (when vegetation coefficients suggest ETEC should exceed reference ET). At the windier tower site, cumulative ETr exceeded ETEC by 854 mm over the course of the mid-period (267 days). At the less windy site, mid-period ETr still exceeded ETEC, but the difference was smaller (443 mm). At both sites, ETPT approximated mid-period ETEC more closely than the ASCE equations ((ETPT-ETEC) < 170 mm). Analysis of applied water and precipitation, soil moisture, leaf stomatal resistance, and canopy cover suggest that the lower observed ETEC was not the result of water stress or reduced vegetation cover. Use of a custom-calibrated bulk canopy resistance improved the reference ET estimate and reduced seasonal ET discrepancy relative to ETPT and ETEC in the less windy field and had mixed performance in the windier field. These divergences suggest that modifications to reference ET equations may be warranted in some tropical regions.

Summary
Divergence of actual and reference evapotranspiration observations for irrigated sugarcane with windy tropical conditions

Excerpt
Alavi, N., Warland, J. S., and Berg, A. A.: Filling gaps in evapotranspiration measurements for water budget studies: Evaluation of a Kalman filtering approach, Agr. Forest Meteorol., 141, 57–66, doi:10.1016/j.agrformet.2006.09.011, 2006.; Alfieri, J. G., Niyogi, D., Blanken, P. D., Chen, F., LeMone, M. A., Mitchell, K. E., Ek, M. B., and Kumar, A.: Estimation of the Minimum Canopy Resistance for Croplands and Grasslands Using Data from the 2002 International H2O Project, Mon. Weather Rev., 136, 4452–4469, doi:10.1175/2008MWR2524.1, 2008.; Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop evapotranspiration?: guidelines for computing crop water requirements, Food and Agriculture Organization of the United Nations, Rome, 1998.; Allen, R. G., Walter, I. A., Elliott, R. L., Howell, T. A., Itenfisu, D., Jensen, M. E., and Snyder, R. L: The ASCE standardized reference evapotranspiration equation, American Society of Civil Engineers, Reston, Va., 2005.; Allen, R. G., Pruitt, W. O., Wright, J. L., Howell, T. A., Ventura, F., Snyder, R., Itenfisu, D., Steduto, P., Berengena, J., Yrisarry, J. B., Smith, M., Pereira, L. S., Raes, D., Perrier, A., Alves, I., Walter, I., and Elliott, R.: A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method, Agr. Water Manage., 81, 1–22, doi:10.1016/j.agwat.2005.03.007, 2006.; Allen, R. G., Tasumi, M., and Trezza, R.: Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)-Model, J. Irrig. Drain. Eng., 133, 380–394, doi:10.1061/(ASCE)0733-9437(2007)133:4(380), 2007.; Anderson, R. G. and Goulden, M. L.: A mobile platform to constrain regional estimates of evapotranspiration, Agr. Forest Meteorol., 149, 771–782, doi:10.1016/j.agrformet.2008.10.022, 2009.; Anderson, R. G. and Wang, D.: Energy budget closure observed in paired Eddy Covariance towers with increased and continuous daily turbulence, Agr. Forest Meteorol., 184, 204–209, doi:10.1016/j.agrformet.2013.09.012, 2014.; Anderson, R. G., Lo, M.-H., and Famiglietti, J. S.: Assessing surface water consumption using remotely-sensed groundwater, evapotranspiration, and precipitation, Geophys. Res. Lett., 39, L16401, doi:10.1029/2012GL052400, 2012.; Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J. R.: Large Area Hydrologic Modeling and Assessment Part I: Model Development, J. Am. Water Resour. Assoc., 34, 73–89, doi:10.1111/j.1752-1688.1998.tb05961.x, 1998.; Arya, S. P.: Introduction to micrometeorology, Academic Press, San Diego, 2001.; Bailey, W. G. and Davies, J. A.: Bulk stomatal resistance control on evaporation, Boundary-Lay. Meteorol., 20, 401–415, doi:10.1007/BF00122291, 1981.; Baker, J. M., Griffis, T. J., and Ochsner, T. E.: Coupling landscape water storage and supplemental irrigation to increase productivity and improve environmental stewardship in the US Midwest, Water Resources Res., 48, W05301, doi:10.1029/2011WR011780, 2012.; Baldocchi, D. D.: Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future, Glob. Change Biol., 9, 479–492, doi:10.1046/j.1365-2486.2003.00629.x, 2003

 

Click To View

Additional Books


  • Statistical Analysis of Error Propagatio... (by )
  • Mapping Daily Evapotranspiration at Fiel... (by )
  • Paleoclimatological Perspective on the H... (by )
  • Potentials and Limits of Urban Rainwater... (by )
  • Stochastic Rainfall Analysis for Storm T... (by )
  • Flood Risk Along the Upper Rhine Since A... (by )
  • Investigating Temporal Field Sampling St... (by )
  • Web 2.0 Collaboration Tools to Support S... (by )
  • Energy Fluxes and Surface Characteristic... (by )
  • Thermal Damping and Retardation in Karst... (by )
  • Ephemeral Stream Sensor Design Using Sta... (by )
  • Development and Validation of a Global D... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.