World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Time Scale of the Largest Imaginable Magnetic Storm : Volume 20, Issue 1 (08/01/2013)

By Vasyliūnas, V. M.

Click here to view

Book Id: WPLBN0003988415
Format Type: PDF Article :
File Size: Pages 5
Reproduction Date: 2015

Title: Time Scale of the Largest Imaginable Magnetic Storm : Volume 20, Issue 1 (08/01/2013)  
Author: Vasyliūnas, V. M.
Volume: Vol. 20, Issue 1
Language: English
Subject: Science, Nonlinear, Processes
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Vasyliūnas, V. M. (2013). Time Scale of the Largest Imaginable Magnetic Storm : Volume 20, Issue 1 (08/01/2013). Retrieved from

Description: Max-Planck-Institut für Sonnensystemforschung, 37191 Katlenburg-Lindau, Germany. The depression of the horizontal magnetic field at Earth's equator for the largest imaginable magnetic storm has been estimated (Vasyliūnas, 2011a) as −Dst ~ 2500 nT, from the assumption that the total pressure in the magnetosphere (plasma plus magnetic field perturbation) is limited, in order of magnitude, by the minimum pressure of Earth's dipole field at the location of each flux tube. The obvious related question is how long it would take the solar wind to supply the energy content of this largest storm. The maximum rate of energy input from the solar wind to the magnetosphere can be evaluated on the basis either of magnetotail stress balance or of polar cap potential saturation, giving an estimate of the time required to build up the largest storm, which (for solar-wind and magnetospheric parameter values typical of observed superstorms) is roughly between ~2 and ~6 h.

Time scale of the largest imaginable magnetic storm

Gonzalez, W. D.: A unified view of solar wind-magnetosphere coupling functions, Planet. Space Sci., 38, 627–632, 1990.; Carovillano, R. L. and Siscoe, G. L.: Energy and momentum theorems in magnetospheric dynamics, Rev. Geophys. Space Phys., 11, 289–353, 1973.; Dal Lago, A., Gonzalez, W. D., Balmaceda, L. A., Vieira, L. E. A., Echer, E., Guarnieri, F. L., Santos, J., da Silva, M. R., de Lucas, A., Clúa de Gonzalez, A. L., Schwenn, R., and Schuch, N. J.: % The 17–22 October (1999) solar-interplanetary-geomagnetic event: Very intense geomagnetic storm associated with a pressure balance between interplanetary coronal mass ejection and a high-speed stream, J. Geophys. Res., 111, A07S14, doi:10.1029/2005JA011394, 2006.; Echer, E., Gonzalez, W. D., and Tsurutani, B. T.: Interplanetary conditions leading to superintense geomagnetic storms (Dst ≤ −250 nT) during solar cycle 23, Geophys. Res. Lett., 35, L06S03, doi:10.1029/2007GL031755, 2008.; Gonzalez, W. D. and Mozer, F. S.: A quantitative model for the potential resulting from reconnection with an arbitrary interplanetary magnetic field, J. Geophys. Res., 79, 4186–4194, 1974.; Gonzalez, W. D., Tsurutani, B. T., Gonzalez, A. L. C., Smith, E. J., Tang, F., and Akasofu, S.-I.: Solar wind-magnetosphere coupling during intense magnetic storms (1978–1979), J. Geophys. Res., 94, 8835–8851, 1989.; Gonzalez, W. D., Joselyn, J. A., Kamide, Y., Kroehl, H. W., Rostoker, G., Tsurutani, B. T., and Vasyli{\=u}nas, V. M.: What is a geomagnetic storm?, J. Geophys. Res., 99, 5771–5792, 1994.; Gonzalez, W. D., Echer, E., Tsurutani, B. T., Clúa de Gonzalez, A. L., and Dal Lago, A.: Interplanetary origin of intense, superintense and extreme geomagnetic storms, Space Sci. Rev., 158, 69–89, doi:10.1007/s11214-010-9715-2, 2011.; Hairston, M. R., Drake, K. A., and Skoug, R.: Saturation of the ionospheric polar cap potential during the October–November 2003 superstorms, J. Geophys. Res., 110, A09S26, doi:10.1029/2004JA010864, 2005.; Siscoe, G. L. and Cummings, W. D.: On the cause of geomagnetic bays, Planet. Space Sci., 17 1795–1802, 1969.; Siscoe, G. L. and Crooker, N. U.: A theoretical relation between DST and the solar wind merging electric field, Geophys. Res. Lett., 1, 17–19, 1974.; Hill, T. W., Dessler, A. J., and Wolf, R. A.: Mercury and Mars: The role of ionospheric conductivity in the acceleration of magnetospheric particles, Geophys. Res. Lett., 3, 429–432, 1976.; Kan, J. R. and Lee, L. C.: Energy coupling function and solar wind-magnetosphere dynamo, Geophys. Res. Lett, 6, 577–580, 1979.; Kan, J. R., Lee, L. C. and Akasofu, S.-I.: The energy coupling function and the power generated by the solar wind-magnetosphere dynamo, Planet. Space Sci., 28, 823–825, 1980.; Kivelson, M. G. and Ridley, A. J.: Saturation of the polar cap potential: Inference from Alfvén wing arguments, J. Geophys. Res., 113, A05214, doi:10.1029/2007JA012302, 2008.; Koskinen, H. E. J. and Tanskanen, E. I.: Magnetospheric energy budget and the epsilon parameter, J. Geophys. Res., 107, 1415, doi:10.1029/2002JA009283, 2002.; Shepherd, S. G.: Polar cap potential saturation: Observations, theory, and modeling, J. Atmos. Solar-Terr. Phys., 69


Click To View

Additional Books

  • Climate of Utopia : Volume 15, Issue 4 (... (by )
  • A Comparison of Predictors of the Error ... (by )
  • Energetics of Internal Solitary Waves in... (by )
  • Trend Assessment: Applications for Hydro... (by )
  • Deterministic Description of a Phase Tra... (by )
  • An Extended Approach for Spatiotemporal ... (by )
  • Trans-sonic Cusped Shaped, Periodic Wave... (by )
  • Methods to Describe Barotropic Vortices ... (by )
  • On Statistical Equilibrium in Helical Fl... (by )
  • A New Theoretical Paradigm to Describe H... (by )
  • Sea Surface Temperature Patterns in Trop... (by )
  • Two- and Three-dimensional Computation o... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.