World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Optimal Localized Observations for Advancing Beyond the Enso Predictability Barrier : Volume 20, Issue 2 (02/04/2013)

By Kramer, W.

Click here to view

Book Id: WPLBN0003988641
Format Type: PDF Article :
File Size: Pages 10
Reproduction Date: 2015

Title: Optimal Localized Observations for Advancing Beyond the Enso Predictability Barrier : Volume 20, Issue 2 (02/04/2013)  
Author: Kramer, W.
Volume: Vol. 20, Issue 2
Language: English
Subject: Science, Nonlinear, Processes
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Historic
Publication Date:
2013
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Kramer, W., & Dijkstra, H. A. (2013). Optimal Localized Observations for Advancing Beyond the Enso Predictability Barrier : Volume 20, Issue 2 (02/04/2013). Retrieved from http://hawaiilibrary.net/


Description
Description: Institute for Marine and Atmospheric research Utrecht, Department of Physics and Astronomy, Utrecht University, Utrecht, the Netherlands. The existing 20-member ensemble of 50 yr ECHAM5/MPI-OM simulations provides a reasonably realistic Monte Carlo sample of the El Niño–Southern Oscillation (ENSO). Localized observations of sea surface temperature (SST), zonal wind speed and thermocline depth are assimilated in the ensemble using sequential importance sampling to adjust the weight of ensemble members. We determine optimal observation locations, for which assimilation yields the minimal ensemble spread. Efficient observation locations for SST lie in the ENSO pattern, with the optimum located in the eastern and western Pacific for minimizing uncertainty in the NINO3 and NINO4 index, respectively. After the assimilation of the observations, we investigate how the weighted ensemble performs as a nine-month probabilistic forecast of the ENSO. Here, we focus on the spring predictability barrier with observation in the January–March (March–May) period and assess the remaining predictive power in June (August) for NINO3 (NINO4). For the ECHAM5/MPI-OM ensemble, this yields that SST observations around 110° W and 140° W provide the best predictive skill for the NINO3 and NINO4 index, respectively. Forecasts can be improved by additionally measuring the thermocline depth at 150° W.

Summary
Optimal localized observations for advancing beyond the ENSO predictability barrier

Excerpt
Battisti, D. S. and Hirst, A. C.: Interannual variability in a tropical atmosphere-ocean model: Influence of the basic state, ocean geometry and nonlinearity, J. Atmos. Sci., 46, 1687–1712, 1989.; Burgers, G. and Stephenson, D. B.: The Normality of {E}l {N}i{ñ}o, Geophys. Res. Lett., 26, 1027–1030, 1999.; Chen, Y. Q., Battisti, D. S., Palmer, T. N., Barsugli, J., and Sarachik, E. S.: Study of the predictability of tropical SST in a coupled atmosphere-ocean model using singular vector analysis: T}he role of the annual cycle and the {ENSO cycle, Mon. Wea. Rev., 125, 831–845, 1997.; Federov, A. V.: The response of the coupled ocean-atmosphere to westerly wind bursts, Q. J. Roy. Meteorol. Soc., 128, 1–23, 2002.; Duan, W., Liu, X., Zhu, K., and Mu, M.: Exploring the initial error that causes a significant predictability barrier for El Niño events, J. Geophys. Res., 114, C04022, 1–12, 2009.; Federov, A. V., Harper, S., Philander, S., Winter, B., and Wittenberg, A.: How predictable is {El Ni{ñ}o}?, Bull. Amer. Meteor. Soc., 911–919, 2003.; Jungclaus, J. H., Keenlyside, N., Haak, H., Luo, J.-J., Latif, M., Marotzke, J., Mikolajewicz, U., and Roeckner, E.: Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM, J. Climate, 19, 3952–3972, 2006.; Kramer, W., Dijkstra, H. A., Pierini, S., and van Leeuwen, P. J.: Measuring the impact of observations on the predictability of the Kuroshio Extension in a shallow-water model, J. Phys. Oceanogr., 42, 3–17, 2012.; Kug, J.-S., Choi, J., An, S.-I., Jin, F.-F., and Wittenberg, A. T.: Warm Pool and Cold Tongue E}l {N}i{ñ}o Events as Simulated by the {GFDL 2.1 Coupled GCM, J. Climate, 23, 1226–1239, 2010.; Latif, M., Barnett, T. P., Cane, M. A., Fl{ü}gel, M., Graham, N. E., von Storch, H., Xu, J.-S., and Zebiak, S. E.: A review of ENSO prediction studies, Clim. Dynam., 9, 167–179, 1994.; McPhaden, M. J., Busalacchi, A. J., Cheney, R., Donguy, J. R., Gage, K. S., Halpern, D., Ji, M., Julian, P., Meyers, G., Mitchum, G. T., Niiler, P. P., Picaut, J., Reynolds, R. W., Smith, N., and Takeuchi, K.: The tropical ocean-global atmosphere observing system: a decade of progress, J. Geophys. Res, 103, 14169–14240, 1998.; Moore, A. M. and Kleeman, R.: The dynamics of error growth and predictability in a coupled model of ENSO, Q. J. Roy. Meteorol. Soc., 122, 1405–1446, 1996.; Mu, M., Duan, W., and Wang, B.: Season-dependent dynamics of nonlinear optimal error growth and ENSO predictability in a theoretical model, J. Geophys. Res., 112, D10113, 1–10, 2007.; Neelin, J. D.: The slow sea surface temperature mode and the fast-wave limit: analytic theory for tropical interannual oscillations and expactations in a hybrid coupled model, J. Atmos. Sci., 48, 584–606, 1991.; Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., Kent, E. C., and Kaplan, A.: Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century, J. Geophys. Res., 108, 4407, 1–22, 2003.; Reynolds, R. W. and Smith, T. M.: Improved global sea surface temperature analyses using optimum interpolation, J. Climate, 7, 929–948, 1994.; Roeckner, E., B{ä}uml, G., Bonaventura, L., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S., Kirchner, I., Kornblueh, L., Manzini, E., Rhodin, A., Schlese, U., Schulzweida, U., and Tompkins, A.: The atmospheric general circulation model ECHAM 5. Part 1: Model description, Tech. Rep. 349, Max-Planck-Institute for Meteorology, 2003.; Roeckner, E., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S., Kornblueh, L., Manzini, E., Schlese, U., and Schulzweida, U.: Sensitivity of simulated climate to hori

 

Click To View

Additional Books


  • Combination of Different Types of Ensemb... (by )
  • Bayesian Estimation of the Self-similari... (by )
  • The Comparative Study of Chaoticity and ... (by )
  • Trend Assessment: Applications for Hydro... (by )
  • On the Spectral Distribution of Kinetic ... (by )
  • Hybrid Variational-ensemble Assimilation... (by )
  • Flux-gradient Relationship for Turbulent... (by )
  • Dynamical Segmentation and Rupture Patte... (by )
  • Multifractal Magnetic Susceptibility Dis... (by )
  • Breeding and Predictability in the Baroc... (by )
  • Solitary Waves Observed in the Auroral Z... (by )
  • Efficient Selective Filtering of Seismic... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.