World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Estimation of Predictive Hydrological Uncertainty Using Quantile Regression: Examples from the National Flood Forecasting System (England and Wales) : Volume 15, Issue 1 (21/01/2011)

By Weerts, A. H.

Click here to view

Book Id: WPLBN0003988833
Format Type: PDF Article :
File Size: Pages 11
Reproduction Date: 2015

Title: Estimation of Predictive Hydrological Uncertainty Using Quantile Regression: Examples from the National Flood Forecasting System (England and Wales) : Volume 15, Issue 1 (21/01/2011)  
Author: Weerts, A. H.
Volume: Vol. 15, Issue 1
Language: English
Subject: Science, Hydrology, Earth
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Winsemius, H. C., Verkade, J. S., & Weerts, A. H. (2011). Estimation of Predictive Hydrological Uncertainty Using Quantile Regression: Examples from the National Flood Forecasting System (England and Wales) : Volume 15, Issue 1 (21/01/2011). Retrieved from

Description: Deltares, P.O. Box 177, 2600 MH Delft, The Netherlands. In this paper, a technique is presented for assessing the predictive uncertainty of rainfall-runoff and hydraulic forecasts. The technique conditions forecast uncertainty on the forecasted value itself, based on retrospective Quantile Regression of hindcasted water level forecasts and forecast errors. To test the robustness of the method, a number of retrospective forecasts for different catchments across England and Wales having different size and hydrological characteristics have been used to derive in a probabilistic sense the relation between simulated values of water levels and matching errors. From this study, we can conclude that using Quantile Regression for estimating forecast errors conditional on the forecasted water levels provides a relatively simple, efficient and robust means for estimation of predictive uncertainty.

Estimation of predictive hydrological uncertainty using quantile regression: examples from the National Flood Forecasting System (England and Wales)

Bailey, R. and Dobson, C.: Forecasting for floods in the Severn catchment, J. Inst. Water Engrs. Sci., 35(2), 168–178, 1981.; Baur, D., Saisana, M., and Schulze, N.: Modelling the effects of meteorological variables on ozone concentration – a quantile regression approach, Atmos. Environ., 38(28), 4689–4699, doi:10.1016/j.atmosenv.2004.05.028, 2004.; Beven, K. J.: A manifesto for the equifinality thesis, J. Hydrol., 320, 18–36, 2006.; Bremnes, J.: Probabilistic forecasts of precipitation in terms of quantiles using NWP model output, Mon. Weather Rev., 132(1), 338–347, 2004.; Bremnes, J.: A comparison of a few statistical models for making quantile wind power forecasts, Wind Energy, 9(1–2), 3–11, doi:10.1002/we.182, 2006.; Broersen, P. M. T. and Weerts, A. H.: Automatic error correction of rainfall-runoff models in flood forecasting systems, in: Instrumentation and Measurement Technology Conference (IMTC), 2005, Proceedings of the IEEE, 19 May 2005, vol. 2, 963–968, 2005.; Clark, M. P., Rupp, D. E., Woods, R. A., Zheng, X., Ibbitt, R. P., Slater, A. G., Schmidt, J., and Uddstrom, M. J.: Hydrological data assimilation with the ensemble Kalman filter: use of streamflow observations to update states in a distributed hydrological model, Adv. Water Resour., 31(10), 1309–1324, doi:10.1016/j.advwatres.2008.06.005, 2008.; Greenfield, B.: The Thames Water Catchment Model, Internal report, Technology and Development Divisionbn, Thames Water, UK, 1984.; Juban, J., Siebert, N., and Kariniotakis, G.: Probabilistic short-term wind power forecasting for the optimal management of wind generation, 2007 IEEE Lausanne Powertech, Vols. 1–5, 683–688, 2007.; Kelly, K. S. and Krzysztofowicz, R.: A bivariate meta-Gaussian density for use in hydrology, Stoch. Hydrol. Hydraul., 11(1), 17–31, 1997.; Koenker, R.: Quantile Regression, Cambridge University Press, 2005.; Koenker, R.: Quantile regression in R: A vignette, online available from:, 2010.; Koenker, R. and Basset, G.: Regression Quantiles, Econometrica, 46(1), 33–50, 1978.; Koenker, R. and Hallock, K. F.: Quantile Regression, The Journal of Economic Perspectives, 15(4), 143–156, 2001.; Krzysztofowicz, R. and Maranzano, C. J.: Hydrologic uncertainty processor for probabilistic stage transition forecasting, J. Hydrol., 293(1–4), 57–73, doi:10.1016/j.jhydrol.2004.01.003, 2004.; Serban, P. and Askew, A. J.: Hydrological forecasting and updating procedures, IAHS pub. no. 201, 357–369, 1991.; Shamseldin, A. and O'Connor, K.: A non-linear neural network technique for updating of river flow forecasts, Hydrology and Earth System Sciences, 5(4), 577–597, 2001.; Montanari, A. and Brath, A.: A stochastic approach for assessing the uncertainty of rainfall-runoff simulations, Water Resour. Res., 40, W01106, doi:10.1029/2003WR002540, 2004.; Moore, R. J.: The PDM rainfall-runoff model, Hydrol. Earth Syst. Sci., 11, 483–499, doi:10.5194/hess-11-483-2007, 2007.; Nielsen, H., Nielsen, T., Madsen, H., Giebel, G., Badger, J., Landberg, L., Sattler, K., Voulund, L., and Tofting, J.: From wind ensembles to probabilistic information about future wind power production – results from an actual application, 2006 International conference on probabilistic methods applied to power, 639–646, 2006.; Pitt, M.: The Pitt Review – Learning Lessons from the 2007 floods, online available from:, last access: 9 June 2010, 2008.; R Development Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, online available from:, 2010.; Raferty, A., Balabdaoui, F., Gneiting, T., and


Click To View

Additional Books

  • Challenges in Modelling River Flow and I... (by )
  • Stochastic Rainfall Analysis for Storm T... (by )
  • Effects of Clear-cutting of Forest on th... (by )
  • Multi-scale Analysis of Bias Correction ... (by )
  • Process-based Karst Modelling to Relate ... (by )
  • The Influence of Methodological Procedur... (by )
  • The European Flood Alert System – Part 1... (by )
  • Quantifying Spatial and Temporal Dischar... (by )
  • Benefits from Using Combined Dynamical-s... (by )
  • Improving Arable Land Heterogeneity Info... (by )
  • Accounting for Three Sources of Uncertai... (by )
  • High-resolution Land Surface Modeling Ut... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.