World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

The Effect of Nonlinear Ionospheric Conductivity Enhancement on Magnetospheric Substorms : Volume 20, Issue 3 (27/06/2013)

By Spencer, E.

Click here to view

Book Id: WPLBN0003989565
Format Type: PDF Article :
File Size: Pages 7
Reproduction Date: 2015

Title: The Effect of Nonlinear Ionospheric Conductivity Enhancement on Magnetospheric Substorms : Volume 20, Issue 3 (27/06/2013)  
Author: Spencer, E.
Volume: Vol. 20, Issue 3
Language: English
Subject: Science, Nonlinear, Processes
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Spencer, E., & Patra, S. (2013). The Effect of Nonlinear Ionospheric Conductivity Enhancement on Magnetospheric Substorms : Volume 20, Issue 3 (27/06/2013). Retrieved from

Description: Electrical and Computer Engineering Department, Utah State University, Logan, UT 84322, USA. We introduce the effect of enhanced ionospheric conductivity into a low-order, physics-based nonlinear model of the nightside magnetosphere called WINDMI. The model uses solar wind and interplanetary magnetic field (IMF) parameters from the ACE satellite located at the L1 point to predict substorm growth, onset, expansion and recovery measured by the AL index roughly 50–60 min in advance. The dynamics introduced by the conductivity enhancement into the model behavior is described, and illustrated through using synthetically constructed solar wind parameters as input. We use the new model to analyze two well-documented isolated substorms: one that occurred on 31 July 1997 from Aksnes et al. (2002), and another on 13 April 2000 from Huang et al. (2004). These two substorms have a common feature in that the solar wind driver sharply decreases in the early part of the recovery phase, and that neither of them are triggered by northward turning of the IMF Bz. By controlling the model parameters such that the onset time of the substorm is closely adhered to, the westward auroral electrojet peaks during substorm expansion are qualitatively reproduced. Furthermore, the electrojet recovers more slowly with enhanced conductivity playing a role, which explains the data more accurately.

The effect of nonlinear ionospheric conductivity enhancement on magnetospheric substorms

Ahn, B.-H., Richmond, A., Kamide, Y., Kroehl, H., Emery, B., de la Beaujardie, O., and Akasofu, S.-I.: An ionospheric conductance model based on ground magnetic disturbance data, J. Geophys. Res., 103, 14769–14780, 1998.; Akasofu, S.: Several Controversial Issues on Substorms, Space Sci. Rev., 113, 1–40, 2004.; Aksnes, A., Stadsnes, J., Bjordal, J., \O stgaard, N., Vondrak, R. R., Detrick, D. L., Rosenberg, T. J., Germany, G. A., and Chenette, D.: Instantaneous ionospheric global conductance maps during an isolated substorm, Ann. Geophys., 20, 1181–1191, doi:10.5194/angeo-20-1181-2002, 2002.; Baker, D., Pulkkinen, T., Buchner, J., and Klimas, A.: Substorms: A global instability of the magnetosphere-ionosphere system, J. Geophys. Res., 104, 14601–14611, 1999.; Birn, J., Artemyev, A., Baker, D., Echim, M., Hoshino, M., and Zelenyi, L.: Particle acceleration in the magnetotail and aurora, Space Sci. Rev., 173, 49–102, doi:10.1007/s11214-012-9874-4, 2012.; Blanchard, G. and McPherron, R.: A bimodal representation of the response function relating the solar wind electric field to the AL index, J. Adv. Space Res., 13, 4, 71–74, 1993.; Coumans, V., Gérard, J.-C., Hubert, B., Meurant, M., and Mende, S. B.: Global auroral conductance distribution due to electron and proton precipitation from IMAGE-FUV observations, Ann. Geophys., 22, 1595–1611, doi:10.5194/angeo-22-1595-2004, 2004.; Doxas, I., Horton, W., Lin, W., Seibert, S., and Mithaiwala, M.: A Dynamical Model for the Coupled Inner Magnetosphere and Tail, IEEE Trans. Plasma Sc., 32, 1443–1448, 2004.; Gallardo-Lacourt, B., Nishimura, Y., Lyons, L. R., and Donovan, E.: External triggering of substorms identified using modern optical versus geosynchronous particle data, Ann. Geophys., 30, 667–673, doi:10.5194/angeo-30-667-2012, 2012.; Gjerloev, J. and Hoffman, R.: Height-integrated conductivity in auroral substorms: 1. Data, J. Geophys. Res., 105, doi:10.1029/1999JA900354, 2000a.; Gjerloev, J. and Hoffman, R.: Height-integrated conductivity in auroral substorms: 2. Modelling, J. Geophys. Res., 105, doi:10.1029/1999JA900353, 2000b.; Horton, W. and Doxas, I.: A low-dimensional energy-conserving state space model for substorm dynamics, J. Geophys. Res., 101, 27223–27237, 1996.; Horton, W., Weigel, R. S., Vassiliadis, D., and Doxas, I.: Substorm classification with the WINDMI model, Nonlin. Processes Geophys., 10, 363–371, doi:10.5194/npg-10-363-2003, 2003.; Klimas, A., Baker, D., Vassiliadis, D., Roberts, D., Fairfield, D., and Buchner, J.: A nonlinear analog model of geomagnetic activity, J. Geophys. Res., 97, 1992.; Klimas, A., Vassiliadis, D., Baker, D., and Roberts, D.: The organized nonlinear dynamics of the magnetosphere, J. Geophys. Res., 101, A6, 13089–13113, 1996.; Huang, C., Foster, J., Goncharenko, L., Reeves, G., Chau, J., Yumoto, K., and Kitamura, K.: Variations of low-latitude geomagnetic fields and Dst index caused by magnetospheric substorms, J. Geophys. Res., 109, doi:10.1029/2003JA010334, 2004.; Klimas, A., Valdivia, J., Vassiliadis, D., and Baker, D.: AL index prediction using data-derived nonlinear prediction filters, Phys. Plasma., edited by: Chang, T. and Jasperse, J. R., 1998.; Knight, S.: Parallel electric fields, Planet. Space Sci., 21, 741–750, 1973.; Mays, M. L., Horton, W., Spencer, E., and Kozyra, J.: Real-time predictions of geomagnetic storms and substorms: Use of the Solar Wind Magnetosphere-Ionosphere System model, Space Weather, 7, &l


Click To View

Additional Books

  • Dynamics of Turbulence Under the Effect ... (by )
  • The Fourth Workshop on Nonlinear Process... (by )
  • Variational Data Assimilation with Super... (by )
  • Dynamics of a Seismogenic Fault Subject ... (by )
  • Propagation Regimes of Interfacial Solit... (by )
  • Verification Against Perturbed Analyses ... (by )
  • A Simple Model for the Earthquake Cycle ... (by )
  • On the Ionospheric Coupling of Auroral E... (by )
  • Landau-fluid Simulations of Alfvén-wave ... (by )
  • Earthquake Simulations with Time-depende... (by )
  • Comment on Obliquely Propagating Large A... (by )
  • Time-dependent Prediction Degredation As... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.