World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Escape Rate: a Lagrangian Measure of Particle Deposition from the Atmosphere : Volume 20, Issue 5 (29/10/2013)

By Haszpra, T.

Click here to view

Book Id: WPLBN0003990793
Format Type: PDF Article :
File Size: Pages 15
Reproduction Date: 2015

Title: Escape Rate: a Lagrangian Measure of Particle Deposition from the Atmosphere : Volume 20, Issue 5 (29/10/2013)  
Author: Haszpra, T.
Volume: Vol. 20, Issue 5
Language: English
Subject: Science, Nonlinear, Processes
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Tél, T., & Haszpra, T. (2013). Escape Rate: a Lagrangian Measure of Particle Deposition from the Atmosphere : Volume 20, Issue 5 (29/10/2013). Retrieved from

Description: Institute for Theoretical Physics and HAS Research Group, Eötvös Loránd University, Pázmány P. s. 1/A, Budapest, 1117, Hungary. Due to rising or descending air and due to gravity, aerosol particles carry out a complicated, chaotic motion and move downwards on average. We simulate the motion of aerosol particles with an atmospheric dispersion model called the Real Particle Lagrangian Trajectory (RePLaT) model, i.e., by solving Newton's equation and by taking into account the impacts of precipitation and turbulent diffusion where necessary, particularly in the planetary boundary layer. Particles reaching the surface are considered to have escaped from the atmosphere. The number of non-escaped particles decreases with time. The short-term and long-term decay are found to be exponential and are characterized by escape rates. The reciprocal values of the short-term and long-term escape rates provide estimates of the average residence time of typical particles, and of exceptional ones that become convected or remain in the free atmosphere for an extremely long time, respectively. The escape rates of particles of different sizes are determined and found to vary in a broad range. The increase is roughly exponential with the particle size. These investigations provide a Lagrangian foundation for the concept of deposition rates.

Escape rate: a Lagrangian measure of particle deposition from the atmosphere

D'Amours, R. and Malo, A.: A zeroth order Lagrangian Particle Dispersion Model MLDP0, Meteorological Service of Canada, Canadian Meteorological Centre, Environmental Emergency Response Section, internal report, 2004.; Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim Reanalysis: Configuration performance of the data assimilation system, Quart. J. Roy. Meteor. Soc., 137, 553–597, 2011.; Draxler, R. R. and Hess, G. D.: An overview of the HYSPLIT_4 modeling system for trajectories, dispersion and deposition, Australian Meteorological Magazine, 47, 295–308, 1998.; Draxler, R. R. and Hess, G. D.: Description of the HYSPLIT_4 modeling system, Air Resources Laboratory, Silver Spring, Maryland, NOAA Technical Memorandum ERL ARL-224, 2004.; Drótos, G. and Tél, T.: Chaotic saddles in a gravitational field: The case of inertial particles in finite domains, Phys. Rev. E, 83, 056203, doi:10.1103/PhysRevE.83.056203, 2011.; Dyer, A. J.: A review of flux-profile relationships, Bound.-Lay. Meteorol., 7, 363–372, 1974.; Haszpra, T. and Tél, T.: Volcanic ash in the free atmosphere: A dynamical systems approach, J. Physics: Conference Series, 333, 012008, doi:10.1088/1742-6596/333/1/012008, 2011.; Haszpra, T. and Tél, T.: Topological entropy: a Lagrangian measure of the state of the free atmosphere, J. Atmos. Sci., doi:10.1175/JAS-D-13-069.1, online first, 2013.; Heffter, J. and Stunder, B.: Volcanic Ash Forecast Transport And Dispersion (VAFTAD) model, Weather Forecast., 8, 533–541, 1993.; Högström, U.: Non-dimensional wind and temperature profiles in the atmospheric surface layer: a re-evaluation, Bound.-Lay. Meteorol., 42, 55–78, 1988.; Holton, J. R.: An introduction to dynamic meteorology, Academic Press, 1992.; Holtstag, A. A. M. and Boville, B. A.: Local versus nonlocal boundary-layer diffusion in a global climate model, J. Climate, 6, 1825–1842, 1993.; Tél, T. and Gruiz, M.: Chaotic Dynamics, Cambridge, 2006.; Holtstag, A. A. M., Bruijn, E. I. F., and Pan, H.-L.: A high resolution air mass transformation model for short range weather forecasting, Mon. Weather Rev., 118, 1561–1575, 1990.; Jones, A., Thomson, D., Hort, M., and Devenish, B.: The U.K. Met Office's Next-Generation Atmospheric Dispersion Model, NAME III, in: Air Pollution Modeling and Its Application XVII, edited by: Borrego, C. and Norman, A.-L., 580–589, doi:10.1007/978-0-387-68854-1_62, Springer US, 2007.; Kalnay, E.: Atmospheric modeling, data assimilation and predictability, Cambridge University Press, Cambridge, 2003.; Lai, Y.-C. and Tél, T.: Transient Chaos, Springer, New York, 2011.; Maxey, M. R. and Riley, J. J.: Equation of motion for a small rigid sphere in a nonuniform flow, Phys. Fluids, 26, 883–889, doi:10.1063/1.864230, 1983.; Ott, E.: Chaos in Dynamical Systems, Cambridge, 1993.; Pruppacher, H. and Klett, J.: Microphysics of Clouds and Precipitation, Kluwer Academic Publishers, Dordrecht, 1998.; Ryall, D. and Maryon, R.: Validation of the UK Met. Office's NAME model against the ETEX dataset, Atmos. Environ., 32, 4265–4276, 1998.; Searcy, C., Dean, K., and Stinger, W.: PUFF: A high-resolution volcanic ash tracking model, J. Volcanol. Geotherm. Res., 80, 1–16


Click To View

Additional Books

  • Multifractal Analysis of Vertical Profil... (by )
  • Nonlinear Dynamics of Wind Waves: Multif... (by )
  • Weather Regime Dependence of Extreme Val... (by )
  • Whistler Oscillitons Revisited: the Role... (by )
  • Nonlinear Analysis of Drainage Systems t... (by )
  • Logit-normal Mixed Model for Indian Mons... (by )
  • Solitary Wave in a Burridge-knopoff Mode... (by )
  • Limitations of Hall Mhd as a Model for T... (by )
  • Remarks on the Parallel Propagation of S... (by )
  • New Results of Investigations of Whistle... (by )
  • On the Separation of Timescales in Sprin... (by )
  • Rényi Dimensions and Pedodiversity Indic... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.