World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Finding Recurrence Networks' Threshold Adaptively for a Specific Time Series : Volume 21, Issue 6 (11/11/2014)

By Eroglu, D.

Click here to view

Book Id: WPLBN0003991313
Format Type: PDF Article :
File Size: Pages 8
Reproduction Date: 2015

Title: Finding Recurrence Networks' Threshold Adaptively for a Specific Time Series : Volume 21, Issue 6 (11/11/2014)  
Author: Eroglu, D.
Volume: Vol. 21, Issue 6
Language: English
Subject: Science, Nonlinear, Processes
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Historic
Publication Date:
2014
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Prasad, S., Kurths, J., Marwan, N., & Eroglu, D. (2014). Finding Recurrence Networks' Threshold Adaptively for a Specific Time Series : Volume 21, Issue 6 (11/11/2014). Retrieved from http://hawaiilibrary.net/


Description
Description: Potsdam Institute for Climate Impact Research, Potsdam, Germany. Recurrence-plot-based recurrence networks are an approach used to analyze time series using a complex networks theory. In both approaches – recurrence plots and recurrence networks –, a threshold to identify recurrent states is required. The selection of the threshold is important in order to avoid bias of the recurrence network results. In this paper, we propose a novel method to choose a recurrence threshold adaptively. We show a comparison between the constant threshold and adaptive threshold cases to study period–chaos and even period–period transitions in the dynamics of a prototypical model system. This novel method is then used to identify climate transitions from a lake sediment record.

Summary
Finding recurrence networks' threshold adaptively for a specific time series

Excerpt
Asghari, N., Broeg, C., Carone, L., Casas-Miranda, R., Palacio, J. C. C., Csillik, I., Dvorak, R., Freistetter, F., Hadjivantsides, G., Hussmann, H., Khramova, A., Khristoforova, M., Khromova, I., Kitiashivilli, I., Kozlowski, S., Laakso, T., Laczkowski, T., Lytvinenko, D., Miloni, O., Morishima, R., Moro-Martin, A., Paksyutov, V., Pal, A., Patidar, V., Pecnik, B., Peles, O., Pyo, J., Quinn, T., Rodriguez, A., Romano, M. C., Saikia, E., Stadel, J., Thiel, M., Todorovic, N., Veras, D., Neto, E. V., Vilagi, J., von Bloh, W., Zechner, R., and Zhuchkova, E.: Stability of terrestrial planets in the habitable zone of Gl 777 A, HD 72659, Gl 614, 47 Uma and HD 4208, Astron. Astrophys., 426, 353–365, doi:10.1051/0004-6361:20040390, 2004.; Bartov, Y., Agnon, A., Enzel, Y., and Stein, M.: Catastrophic arid episodes in the Eastern Mediterranean climate linked with the North Atlantic Heinrich events, Geology, 31, 439–442, 2003.; Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., and Hwang, D. U.: Complex networks: structure and dynamics, Phys. Reports, 424, 175–308, doi:10.1016/j.physrep.2005.10.009, 2006.; Bond, G., Showers, W., Cheseby, M., Lotti, R., Almasi, P., deMenocal, P., Priore, P., Cullen, H., Hajdas, I., and Bonani, G.: A Pervasive Millennial-Scale Cycle in North Atlantic Holocene and Glacial Climates, Science, 278, 1257–1266, doi:10.1126/science.278.5341.1257, 1997.; Carrubba, S., Minagar, A., Chesson Jr., A. L., Frilot II, C., and Marino, A.: Increased determinism in brain electrical activity occurs in association with multiple sclerosis, Neurolog. Res., 34, 286–290, doi:10.1179/1743132812Y.0000000010, 2012.; Donges, J. F., Donner, R. V., Trauth, M. H., Marwan, N., Schellnhuber, H. J., and Kurths, J.: Nonlinear detection of paleoclimate-variability transitions possibly related to human evolution, P. Natl. Acad. Sci., 108, 20422–20427, doi:10.1073/pnas.1117052108, 2011.; Donges, J. F., Heitzig, J., Donner, R. V., and Kurths, J.: Analytical framework for recurrence network analysis of time series, Phys. Rev. E, 85, 046105, doi:10.1103/PhysRevE.85.046105, 2012.; Donner, R. V., Zou, Y., Donges, J. F., Marwan, N., and Kurths, J.: Ambiguities in recurrence-based complex network representations of time series, Phys. Rev. E, 81, 015101(R), doi:10.1103/PhysRevE.81.015101, 2010.; Donner, R. V., Small, M., Donges, J. F., Marwan, N., Zou, Y., Xiang, R., and Kurths, J.: Recurrence-based time series analysis by means of complex network methods, Int. J. Bifurcat. Chaos, 21, 1019–1046, doi:10.1142/S0218127411029021, 2011.; Eckmann, J.-P., Oliffson Kamphorst, S., and Ruelle, D.: Recurrence Plots of Dynamical Systems, Europhys. Lett., 4, 973–977, doi:10.1209/0295-5075/4/9/004, 1987.; Hirata, Y., Horai, S., and Aihara, K.: Reproduction of distance matrices from recurrence plots and its applications, Eur. Phys. J., 164, 13–22, doi:10.1140/epjst/e2008-00830-8, 2008.; Kantz, H. and Schreiber, T.: Nonlinear Time Series Analysis, University Press, Cambridge, 1997.; Marwan, N.: A Historical Review of Recurrence Plots, Eur. Phys. J., 164, 3–12, doi:10.1140/epjst/e2008-00829-1, 2008.; Marwan, N.: How to avoid potential pitfalls in recurrence plot based data analysis, Int. J. Bifurcat. Chaos, 21, 1003

 

Click To View

Additional Books


  • On the Generation of Solitary Waves Obse... (by )
  • Nonlinear Optimization Set Pair Analysis... (by )
  • Stochastic Resonance in a Nonlinear Mode... (by )
  • Empirically Derived Climate Predictabili... (by )
  • Hybrid Levenberg–marquardt and Weak Cons... (by )
  • Stable Langmuir Solitons in Plasma with ... (by )
  • The Fourth Workshop on Nonlinear Process... (by )
  • Analysis of Phase Coherence in Fully Dev... (by )
  • The Cosmo-leps Mesoscale Ensemble System... (by )
  • Reversal in the Nonlocal Large-scale Αω-... (by )
  • Distributed Allocation of Mobile Sensing... (by )
  • Nonlinear Dynamics of Turbulent Waves in... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.