World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Flip-mhd-based Model Sensitivity Analysis : Volume 21, Issue 2 (24/04/2014)

By Skandrani, C.

Click here to view

Book Id: WPLBN0003992645
Format Type: PDF Article :
File Size: Pages 15
Reproduction Date: 2015

Title: Flip-mhd-based Model Sensitivity Analysis : Volume 21, Issue 2 (24/04/2014)  
Author: Skandrani, C.
Volume: Vol. 21, Issue 2
Language: English
Subject: Science, Nonlinear, Processes
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Innocenti, M. E., Bettarini, L., Lapenta, G., Crespon, F., Lamouroux, J., & Skandrani, C. (2014). Flip-mhd-based Model Sensitivity Analysis : Volume 21, Issue 2 (24/04/2014). Retrieved from

Description: NOVELTIS, Space and Remote Sensing Department, Space Weather Unit, rue du Lac 153, 31670 Labège, France. The state of the art in the forecast of the background solar wind speed and of the interplanetary magnetic field at Earth is based on the use as boundary conditions for heliospheric models of the input data provided by solar observations. Magnetogram synoptic maps are used to obtain information on the magnetic field configuration at the solar source surface. Magnetic field inputs at the solar source surface thus constitute one of the main external sources of errors in solar wind models. The assimilation of data into forecasting models used in the terrestrial domain showed the ability to control model state errors. A sensitivity study performed through the analysis of the ensemble variances and the representers technique is used here to assess how process and model state errors propagate in a nonlinear two-dimensional MagnetoHydro Dynamic (MHD) system. The aim is to understand the impact of the source surface input parameters on the evolution of MHD heliospheric models and the potentialities of data assimilation techniques in solar wind forecasting. The representer technique in fact allows one to understand how far from the observation point the improvement granted from the assimilation of a measure propagates.

FLIP-MHD-based model sensitivity analysis

Baker, D. N.: What is space weather?, Adv. Space Res., 22, 7–16, 1998.; Barrero Mendoza, O., De Moor, B., and Bernstein, D. S.: Data assimilation for magnetohydrodynamics systems, J. Comput. Appl. Mathe., 189, 242–259, 2006.; Beck, A., Innocenti, M. E., Lapenta, G., and Markidis, S.: Multi-level multi-domain algorithm implementation for two-dimensional multiscale particle in cell simulations, doi:10.1016/, 2013.; Bennet, A. F.: Inverse Methods in Physical Oceanography, Monographs on Mechanics and Applied Mathematics, Cambridge University Press, Cambridge, 1992.; Bothmer, V. and Daglis, I. A.: Space Weather – Physics and effects, Springer, Praxis Publishing, Chichester, 2007.; Bouttier, F. and Courtier, P.: Data assimilation concepts and methods, Meteorological Training Course Lecture Series, ECMWF, 1999.; Brackbill, J. U.: FLIP MHD – A particle-in-cell method for magnetohydrodynamics, J. Comput. Phys., 96, 163–192, 1991.; Dwivedi, B. N. and Mohan, A.: First tomographic view of coronal mass ejections, Current Sci., 88, 688–690, 2005.; Echevin, V., De Mey, P., and Evensen, G.: Horizontal and vertical structure of the representer functions for sea surface measurements in a coastal circulation model, J. Phys. Oceanogr., 30, 2627–2635, 2000.; Egbert, G. D. and Bennett, A. F.: Data assimilation methods for ocean tides, Modern Approaches to Data Assimilation in Ocean Modeling, edited by: Malonotte-Rizzoli, P., Elsevier Science, 147–179, 1996.; Evensen, G.: Data Assimilation: The Ensemble Kalman Filter, 2nd Edn., Springer, Berlin, 2009.; Fleck, B., Domingo, B., and Poland, A. I.: The SOHO Mission, Solar Phys., 162, 1–531, 1995.; Ghil, M. and Malanotte-Rizzoli, P.: Data assimilation in meteorology and oceanography, Adv. Geophys., 33, 141–266, 1991.; Gantois, K., Santandrea, S., Teston, F., Strauch K., Zender, J., Tilmans, E., and Gerrits, D.: Big year for small satellite – ESA's second in-orbit technology demonstrator mission: PROBA-2, ESA Bulletin, 144, 22–33, 2010.; Gosling, J. and Pizzo, V.: Formation and evolution if corotating interaction regions and their three dimensional structure, Space Sci. Rev., 89, 21–52, 1999.; Innocenti, M. E., Lapenta, G., Vrsnak, B., Crespon, F., Skandrani, C., Temmer, M., Veronig, A., Bettarini, L., Markidis, S., and Skender, M.: Improved forecasts of solar wind parameters using the Kalman filter, Space Weather, 9, 10005, doi:10.1029/2011SW000659, 2011.; Innocenti, M. E., Lapenta, G., Markidis, S., Beck, A., and Vapirev, A.: A multi-level multi domain method for particle in cell plasma simulations, J. Comput. Phys., 238, 115–140, doi:10.1016/, 2013.; Kalman, R.: A new approach to linear filtering and prediction problems, J. Basic Eng., 82, 35–45, 1960.; Kondrashov, D., Shprits, Y., Ghil, M., and Thorne, R.: A Kalman filter technique to estimate relativistic electron lifetimes in the outer radiation belt, J. Geophys. Res., 112, A10227, doi:10.1029/2007JA012583, 2007.; Laakso, H., Taylor, M. G. G. T., and Escoubet, C. P.: The Cluster active archive – Studying the Earth's space plasma environment, Springer, Astrophysics and Space Science Proceedings, 2010.; Levine, R. H., Altschuler, M. D., and Harvey, J. W.: Solar Sources of the Interplanetary Magnetic Field and Solar Wind, J. Geophys. Res., 82, 1061–1065, 1977.; Lyard, F.: Data assimilation in a wave equation: a variational representer approach for the Grenoble tidal model, J. Comput. Phys., 149, 1–31, 1999.; McComas, D. J., Bame, S. J., Barraclough, B. L., Feldman, W. C., Funsten, H. O., Gosling, J. T., Riley, P.; Skoug, R., Balogh, A., Forsyth, R., Goldstein, B. E., and Neugebauer, M.: Ulysses' return to the slow solar wind, Geophys. Res. Lett., 25, 1-4, 1998.


Click To View

Additional Books

  • Scaling Collapse and Structure Functions... (by )
  • The Lifecycle of Axisymmetric Internal S... (by )
  • Propagation Regimes of Interfacial Solit... (by )
  • Sensitivity to Observations Applied to F... (by )
  • Enso's Non-stationary and Non-gaussian C... (by )
  • Topology and Seasonal Evolution of the N... (by )
  • Editorial : Volume 8, Issue 4/5 (30/11/-... (by )
  • Lagrangian Study of Surface Transport in... (by )
  • The Evolution of Mode-2 Nonlinear Intern... (by )
  • Nonlinear Waves and Solitons Propagating... (by )
  • Corrigendum to Number-average Size Model... (by )
  • Non-gaussian Interaction Information: Es... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.