World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Bayesian Cloud Detection for Meris, Aatsr, and Their Combination : Volume 8, Issue 4 (15/04/2015)

By Hollstein, A.

Click here to view

Book Id: WPLBN0003999665
Format Type: PDF Article :
File Size: Pages 15
Reproduction Date: 2015

Title: Bayesian Cloud Detection for Meris, Aatsr, and Their Combination : Volume 8, Issue 4 (15/04/2015)  
Author: Hollstein, A.
Volume: Vol. 8, Issue 4
Language: English
Subject: Science, Atmospheric, Measurement
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Hollstein, A., Henken, C. C., Fischer, J., & Preusker, R. (2015). Bayesian Cloud Detection for Meris, Aatsr, and Their Combination : Volume 8, Issue 4 (15/04/2015). Retrieved from

Description: GeoForschungsZentrum Potsdam (GFZ), Telegrafenberg A17, 14473 Potsdam Germany. A broad range of different of Bayesian cloud detection schemes is applied to measurements from the Medium Resolution Imaging Spectrometer (MERIS), the Advanced Along-Track Scanning Radiometer (AATSR), and their combination. The cloud detection schemes were designed to be numerically efficient and suited for the processing of large numbers of data. Results from the classical and naive approach to Bayesian cloud masking are discussed for MERIS and AATSR as well as for their combination. A sensitivity study on the resolution of multidimensional histograms, which were post-processed by Gaussian smoothing, shows how theoretically insufficient numbers of truth data can be used to set up accurate classical Bayesian cloud masks. Sets of exploited features from single and derived channels are numerically optimized and results for naive and classical Bayesian cloud masks are presented. The application of the Bayesian approach is discussed in terms of reproducing existing algorithms, enhancing existing algorithms, increasing the robustness of existing algorithms, and on setting up new classification schemes based on manually classified scenes.

Bayesian cloud detection for MERIS, AATSR, and their combination

Gómez-Chova, L., Camps-Valls, G., Amorós-López, J., Guanter, L., Alonso, L., Calpe, J., and Moreno, J.: New cloud detection algorithm for multispectral and hyperspectral images: Application to ENVISAT/MERIS and PROBA/CHRIS sensors, in: IEEE International Geoscience and Remote Sensing Symposium, IGARSS, 2757–2760, 2006.; Gómez-Chova, L., Camps-Valls, G., Munoz-Marı, J., Calpe, J., and Moreno, J.: Cloud screening methodology for MERIS/AATSR Synergy products, in: Proc. 2nd MERIS/AATSR User Workshop, ESRIN, Frascati, 22–26, 2008.; Hanssen, A. W. and Kuipers, W. J. A.: On the Relationship Between the Frequency of Rain and Various Meteorological Parameters: (with Reference to the Problem of Objective Forecasting), Staatsdrukkerij-en Uitgeverijbedrijf, 1965.; Carbajal Henken, C. K., Lindstrot, R., Preusker, R., and Fischer, J.: FAME-C: cloud property retrieval using synergistic AATSR and MERIS observations, Atmos. Meas. Tech. Discuss., 7, 4909–4947, doi:10.5194/amtd-7-4909-2014, 2014.; Coppo, P., Ricciarelli, B., Brandani, F., Delderfield, J., Ferlet, M., Mutlow, C., Munro, G., Nightingale, T., Smith, D., Bianchi, S., Nicol, P., Kirschstein, S., Hennig, T., Engel, W., Frerick, J., and Nieke, J.: SLSTR: a high accuracy dual scan temperature radiometer for sea and land surface monitoring from space, J. Mod. Optic., 57, 1815–1830, doi:10.1080/09500340.2010.503010, 2010.; English, S., Eyre, J., and Smith, J.: A cloud-detection scheme for use with satellite sounding radiances in the context of data assimilation for numerical weather prediction, Q. J. Roy. Meteor. Soc., 125, 2359–2378, 1999.; Fomferra, N. and Brockmann, C.: Beam-the ENVISAT MERIS and AATSR toolbox, in: MERIS (A)ATSR Workshop 2005, 597, p. 13, 2005.; Hall, D. K., Riggs, G. A., Salomonson, V. V., DiGirolamo, N. E., and Bayr, K. J.: MODIS snow-cover products, Remote Sens. Environ., 83, 181–194, 2002.; Heidinger, A. K., Evan, A. T., Foster, M. J., and Walther, A.: A naive Bayesian cloud-detection scheme derived from CALIPSO and applied within PATMOS-x, J. Appl. Meteorol. Clim., 51, 1129–1144, 2012.; Hollmann, R. and Lecomte, D. P.: Climate Assessment Report, Tech. rep., ESA Cloud CCI, available at: (last access: 13 April 2015), 2013.; Hollmann, R., Merchant, C., Saunders, R., Downy, C., Buchwitz, M., Cazenave, A., Chuvieco, E., Defourny, P., De Leeuw, G., Forsberg, R., Holzer-Popp, T., Paul, F., Sandven, S., Sathyendranath, S., and Roozendael, M.: The ESA climate change initiative: Satellite data records for essential climate variables, B. Am. Meteorol. Soc., 94, 1541–1552, 2013.; Kriegler, F., Malila, W., Nalepka, R., and Richardson, W.: Preprocessing transformations and their effects on multispectral recognition, in: Remote Sens. Environ., VI, vol. 1, p. 97, 1969.; Llewellyn-Jones, D., Edwards, M., Mutlow, C., Birks, A., Barton, I., and Tait, H.: AATSR: Global-change and surface-temperature measurements from Envisat, ESA bulletin, 105, 11–21, 2001.; Mackie, S., Embury, O., Old, C., Merchant, C., and Francis, P.: Generalized Bayesian cloud detection for satellite imagery. Part 1: Technique and validation for night-time imagery over land and sea, Int. J. Remote Sens., 31, 2573–2594, 2010a.; Mackie, S., Merchant, C., Embury, O., and Francis, P.: Generalized Bayesian cloud detection for satellite imagery. Part 2: Technique and validation for daytime imagery, Int. J. Remote Sens., 31, 2595–2621, 2010b.; Merchant, C., Harris, A., Maturi, E., and MacCallum, S.: Probabilistic physically based cloud screening of satellite infrared imagery for operational sea surface temperature retrieval, Q. J. Roy. Meteor. Soc., 131, 2735–2755, 2005.; Murta


Click To View

Additional Books

  • Prediction of Rainfall Measurement Error... (by )
  • Evaluation of the Lidar/Radiometer Inver... (by )
  • Airborne in Situ Vertical Profiling of H... (by )
  • Seasonal Distribution of Aerosol Propert... (by )
  • Improving the Bias Characteristics of th... (by )
  • Complex Experiment on Stydying the Micro... (by )
  • Retrieval of Aerosol Mass Load (Pm10) fr... (by )
  • The Horizontal Resolution of Mipas : Vol... (by )
  • Impact of Temperature Field Inhomogeneit... (by )
  • A Novel Retrieval of Daytime Atmospheric... (by )
  • Impact of Radar Data Assimilation Using ... (by )
  • Ground-based Stratospheric O3 and Hno3 M... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.