World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Airborne in Situ Vertical Profiling of Hdo / H216O in the Subtropical Troposphere During the Musica Remote Sensing Validation Campaign : Volume 8, Issue 5 (09/05/2015)

By Dyroff, C.

Click here to view

Book Id: WPLBN0003999686
Format Type: PDF Article :
File Size: Pages 13
Reproduction Date: 2015

Title: Airborne in Situ Vertical Profiling of Hdo / H216O in the Subtropical Troposphere During the Musica Remote Sensing Validation Campaign : Volume 8, Issue 5 (09/05/2015)  
Author: Dyroff, C.
Volume: Vol. 8, Issue 5
Language: English
Subject: Science, Atmospheric, Measurement
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Sanati, S., Balzer, M., Schneider, M., Bouquet, H., Dyroff, C., Christner, E.,...González-Ramos, Y. (2015). Airborne in Situ Vertical Profiling of Hdo / H216O in the Subtropical Troposphere During the Musica Remote Sensing Validation Campaign : Volume 8, Issue 5 (09/05/2015). Retrieved from

Description: Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research (IMK-ASF), Karlsruhe, Germany. Vertical profiles of water vapor (H2O) and its isotope ratio D / H expressed as ΔD(H2O) were measured in situ by the ISOWAT II diode-laser spectrometer during the MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water (MUSICA) airborne campaign. We present recent modifications of the instrument design. The instrument calibration on the ground as well as in flight is described. Based on the calibration measurements, the humidity-dependent uncertainty of our airborne data is determined. For the majority of the airborne data we achieved an accuracy (uncertainty of the mean) of Δ(ΔD) ≈10‰. Vertical profiles between 150 and ~7000 m were obtained during 7 days in July and August 2013 over the subtropical North Atlantic Ocean near Tenerife. The flights were coordinated with ground-based (Network for the Detection of Atmospheric Composition Change, NDACC) and space-based (Infrared Atmospheric Sounding Interferometer, IASI) FTIR remote sensing measurements of ΔD(H2O) as a means to validate the remote sensing humidity and ΔD(H2O) data products. The results of the validation are presented in detail in a separate paper (Schneider et al., 2014). The profiles were obtained with a high vertical resolution of around 3 m. By analyzing humidity and ΔD(H2O) correlations we were able to identify different layers of air masses with specific isotopic signatures. The results are discussed.

Airborne in situ vertical profiling of HDO / H216O in the subtropical troposphere during the MUSICA remote sensing validation campaign

Alonso-Pérez, S., Cuevas, E., and Querol, X.: Objective identification of synoptic meteorological patterns favouring African dust intrusions into the marine boundary layer of the subtropical eastern north Atlantic region, Meteorol. Atmos. Phys., 113, 109–124, doi:10.1007/s00703-011-0150-z, 2011.; Benetti, M., Reverdin, G., Pierre, C., Merlivat, L., Risi, C., Steen-Larsen, H. C., and Vimeux, F.: Deuterium excess in marine water vapor: Dependency on relative humidity and surface wind speed during evaporation, J. Geophys. Res.-Atmos., 119, 584–593, doi:10.1002/2013JD020535, 2014.; Blumstein, D., Chalon, G., Carlier, T., Buil, C., Hebert, P., Maciaszek, T., Ponce, G., Phulpin, T., Tournier, B., Simeoni, D., Astruc, P., Clauss, A., Kayal, G., and Jegou, R.: IASI instrument: technical overview and measured performances, Proc. SPIE, 5543, 196–207, doi:10.1117/12.560907, 2004.; Boesch, H., Deutscher, N. M., Warneke, T., Byckling, K., Cogan, A. J., Griffith, D. W. T., Notholt, J., Parker, R. J., and Wang, Z.: HDO / H2O ratio retrievals from GOSAT, Atmos. Meas. Tech., 6, 599–612, doi:10.5194/amt-6-599-2013, 2013.; Bolot, M., Legras, B., and Moyer, E. J.: Modelling and interpreting the isotopic composition of water vapour in convective updrafts, Atmos. Chem. Phys., 13, 7903–7935, doi:10.5194/acp-13-7903-2013, 2013.; Jouzel, J. and Merlivat, L.: Deuterium and Oxygen 18 in Precipitation: Modeling of the Isotopic Effects During Snow Formation, J. Geophys. Res., 89, 11749–11757, 1984.; Brenninkmeijer, C. A. M., Crutzen, P., Boumard, F., Dauer, T., Dix, B., Ebinghaus, R., Filippi, D., Fischer, H., Franke, H., Frieß, U., Heintzenberg, J., Helleis, F., Hermann, M., Kock, H. H., Koeppel, C., Lelieveld, J., Leuenberger, M., Martinsson, B. G., Miemczyk, S., Moret, H. P., Nguyen, H. N., Nyfeler, P., Oram, D., O'Sullivan, D., Penkett, S., Platt, U., Pupek, M., Ramonet, M., Randa, B., Reichelt, M., Rhee, T. S., Rohwer, J., Rosenfeld, K., Scharffe, D., Schlager, H., Schumann, U., Slemr, F., Sprung, D., Stock, P., Thaler, R., Valentino, F., van Velthoven, P., Waibel, A., Wandel, A., Waschitschek, K., Wiedensohler, A., Xueref-Remy, I., Zahn, A., Zech, U., and Ziereis, H.: Civil Aircraft for the regular investigation of the atmosphere based on an instrumented container: The new CARIBIC system, Atmos. Chem. Phys., 7, 4953–4976, doi:10.5194/acp-7-4953-2007, 2007.; Burch, D. E., Singleton, E. B., and Williams, D.: Absorption Line Broadening in the Infrared, Appl. Optics, 1, 359–363, doi:10.1364/AO.1.000359, 1962.; Cuevas, E., González, Y., Rodríguez, S., Guerra, J. C., Gómez-Peláez, A. J., Alonso-Pérez, S., Bustos, J., and Milford, C.: Assessment of atmospheric processes driving ozone variations in the subtropical North Atlantic free troposphere, Atmos. Chem. Phys., 13, 1973–1998, doi:10.5194/acp-13-1973-2013, 2013.; Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16, 436–468, 1964.; Dyroff, C., Fütterer, D., and Zahn, A.: Compact diode-laser spectrometer ISOWAT for highly sensitive airborne measurements of water-isotope ratios, Appl. Phys. B, 98, 537–548, doi:10.1007/s00340-009-3775-6, 2010.; Frankenberg, C., Yoshimura, K., Warneke, T., Aben, I., Butz, A., Deutscher, N., Griffith, D., Hase, F., Notholt, J., Schneider, M., Schrijver, H., and Röckmann, T.: Dynamic Processes Governing Lower-Tropospheric HDO / H2O Ratios as Observ


Click To View

Additional Books

  • The Orbiting Carbon Observatory (Oco-2):... (by )
  • Quantitative and Enantioselective Analys... (by )
  • Validation of Gome-2/Metop-a Total Water... (by )
  • Towards a Consistent Eddy-covariance Pro... (by )
  • Characterization of Trace Metals with th... (by )
  • Atmospheric Composition and Thermodynami... (by )
  • On the Absolute Calibration of So2 Camer... (by )
  • Mirror Contamination in Space I: Approac... (by )
  • Using Digital Image Processing to Charac... (by )
  • A Comparison of Light Backscattering and... (by )
  • Characterization of Video Disdrometer Un... (by )
  • Measurement of the Arctic Utls Compositi... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.