World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Improving the Rainfall Rate Estimation in the Midstream of the Heihe River Basin Using Raindrop Size Distribution : Volume 15, Issue 3 (16/03/2011)

By Zhao, G.

Click here to view

Book Id: WPLBN0004010357
Format Type: PDF Article :
File Size: Pages 9
Reproduction Date: 2015

Title: Improving the Rainfall Rate Estimation in the Midstream of the Heihe River Basin Using Raindrop Size Distribution : Volume 15, Issue 3 (16/03/2011)  
Author: Zhao, G.
Volume: Vol. 15, Issue 3
Language: English
Subject: Science, Hydrology, Earth
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Historic
Publication Date:
2011
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Zhang, T., Wu, Z., Li, J., Chu, R., Zhao, G., & Shen, J. (2011). Improving the Rainfall Rate Estimation in the Midstream of the Heihe River Basin Using Raindrop Size Distribution : Volume 15, Issue 3 (16/03/2011). Retrieved from http://hawaiilibrary.net/


Description
Description: Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000, China. During the intensive observation period of the Watershed Allied Telemetry Experimental Research (WATER), a total of 1074 raindrop size distribution were measured by the Parsivel disdrometer, the latest state-of-the-art optical laser instrument. Because of the limited observation data in Qinghai-Tibet Plateau, the modelling behaviour was not well done. We used raindrop size distributions to improve the rain rate estimator of meteorological radar in order to obtain many accurate rain rate data in this area. We got the relationship between the terminal velocity of the raindrop and the diameter (mm) of a raindrop: v(D) = 4.67D0.53. Then four types of estimators for X-band polarimetric radar are examined. The simulation results show that the classical estimator R (ZH) is most sensitive to variations in DSD and the estimator R (KDP, ZH, ZDR) is the best estimator for estimating the rain rate. An X-band polarimetric radar (714XDP) is used for verifying these estimators. The lowest sensitivity of the rain rate estimator R (KDP, ZH, ZDR) to variations in DSD can be explained by the following facts. The difference in the forward-scattering amplitudes at horizontal and vertical polarizations, which contributes KDP, is proportional to the 3rd power of the drop diameter. On the other hand, the exponent of the backscatter cross-section, which contributes to ZH, is proportional to the 6th power of the drop diameter. Because the rain rate R is proportional to the 3.57th power of the drop diameter, KDP is less sensitive to DSD variations than ZH.

Summary
Improving the rainfall rate estimation in the midstream of the Heihe River Basin using raindrop size distribution

Excerpt
Atlas, D., Ulbrich, C. W., and Meneghini, R.: The multi-parameter remote measurement of rainfall, Radio Sci., 19, 3–22, 1984.; Atlas, D., Ulbrich, C. W., and Meneghini, R.: The multi-parameter remote measurement of rainfall, Radio Sci., 19, 3–22, 1984.; Andsager, K., Beard, K. V., and Laird, N. F.: Laboratory measurements of axis ratios for large drops, J. Atmos. Sci., 56, 2673–2683, 1999.; Battan, L. J.: Radar observation of the atmosphere, Univ. Chicago Press, 324 pp., 1973.; Beard, K. V. and Chuang, C.: A new model for the equilibrium shape of raindrops, J. Atmos. Sci., 44, 1509–1524, 1987.; Beard, K. V.: Terminal velocity and shape of cloud and precipitation drops aloft, J. Atmos. Sci., 33, 851–864, 1976.; Brandes, E. A., Zhang, G., and Vivekanandan, J.: Experiments in rainfall estimation with polarimetric radar in a subtropical environment, J. Appl. Meteorol., 41, 674–685, 2002.; Brandes, E. A., Zhang, G., and Vivekanandan, J.: An evaluation of a drop distribution based polarimetric radar rainfall estimator, J. Appl. Meteor., 42, 652–660, 2003.; Brandes, E. A., Zhang, G., and Vivekanandan, J.: Drop-size distribution retrieval with polarimetric radar: model and application, J. Appl. Meteor., 43(3), 461–475, 2004.; Bringi, V. N. and Chandrasekar, V.: Polarimetric Doppler weather radar, Cambridge Univ. Press, 636 pp., 2001a.; Bringi, V. N, Keenan, T. D., and Chandrasekar, V.: Correcting C band radar reflectivity and differential reflectivity data for rain attenuation: A self-consistent method with constraints, IEEE Trans. Geosci. Remote. Sens., 39, 1906–1915, 2001b.; Carey, L. C., Rutledge, S. A., Ahijevych, D. A., and Keenan, T. D.: Correcting propagation effects in C-band polarimetric radar observations of tropical convection using differential propagation phase, J. Appl. Meteor., 39, 1405–1433, 2000.; Chandrasekar, V., Bringi, V. N., Balakrishnan, N., and Zrnic, D. S.: Error structure of multiparameter radar and surface measurements of rainfall. Part III: Specific differential phase, J. Atmos. Oceanic Technol., 7, 621–629, 1990.; Chandrasekar, V., Gorgucci, E., and Bringi, V. N.: Evaluation of polarimetric radar rainfall algorithms at X-band, Proc. 2nd European Conf. on Radar Meteorology (ERAD), Delft, Netherlands, 277–281, 2002.; Collier, C. G.: Applications of Weather Radar Systems. A Guide to Uses of Radar Data in Meteorology and Hydrology. 2nd edn., John Wiley & Sons, 390 pp., 1996.; Foote, G. B. and du Toit, P. S.:Terminal fellspeeds of raindrops aloft, J. Appl. Meteor., 8, 249–253, 1969.; Joss, J. and Waldvogel, A.: Precipitation measurements and hydrology, Radar in Meteorology, edited by: Atlas, D., Am. Meteor. Soc., 577–606, 1990.; Keenan, T. D., Zrnic, D. S., Carey, L., and May, P.: Sensitivity of 5-cm wavelength polarimetric radar variables to raindrop axial ratio and drop size distribution, J. Appl. Meteor., 40, 526–545, 2001.; Li, X., Li, X. W., Li, Z. Y., Ma, M. G., Wang, J., Xiao, Q., Liu, Q., Che, T., Chen, E. X., Yan, G. J., Hu, Z. Y., Zhang, L. X., Chu, R. Z., Su, P. X., Liu, Q. H., Liu, S. M., Wang, J. D., Niu, Z., Chen, Y., Jin, R., Wang, W. Z., Ran, Y. H., Xin, X. Z. and Ren, H. Z.: Watershed Allied Telemetry Experimental Research, J. Geophys. Res., 114, D22103, doi:10.1029/2008JD011590, 2009.; Matrosov, S. Y., Kropfli, R. A., Reinking, R. F., and Martner, B. E.: Prospects for measuring rainfall using propagation differential phase in X- and Ka-radar bands, J. Appl. Meteorol., 38, 766–776, 1999.; May, P. T., Keenan, T. D., Zrnic, D. S., Carey, L. D., and Rutledge, S. A.: Polarimetric radar measurements of tropical rain at a 5-cm wavelength, J. Appl. Meteor., 38, 750–765, 1999.; Park, S. G., Maki, M., Iwanami, K., Bringi, V. N., and Chandrasekar, V.: Correction of radar reflectivity and differential reflectivity for rain attenuation at X-band. Part II: Evaluation and application, J. Atmos. Oceanic. Technol., 22, 1633–1655, 2005.; Ryzhko

 

Click To View

Additional Books


  • The Artificial Water Catchment Chicken C... (by )
  • Water Saving Through International Trade... (by )
  • The Influence of Soil Moisture on Thresh... (by )
  • Estimating Flow and Transport Parameters... (by )
  • Simulating Typhoon-induced Storm Hydrogr... (by )
  • Climate Elasticity of Streamflow Revisit... (by )
  • Hydro-climatological Non-stationarity Sh... (by )
  • On the Uncertainties Associated with Usi... (by )
  • Inclusion of Potential Vorticity Uncerta... (by )
  • Modelling Groundwater-dependent Vegetati... (by )
  • Thermodynamic Limits of Hydrologic Cycli... (by )
  • Estimation of Temporal and Spatial Varia... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.