World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Thermal Damping and Retardation in Karst Conduits : Volume 19, Issue 1 (09/01/2015)

By Luhmann, A. J.

Click here to view

Book Id: WPLBN0004011393
Format Type: PDF Article :
File Size: Pages 21
Reproduction Date: 2015

Title: Thermal Damping and Retardation in Karst Conduits : Volume 19, Issue 1 (09/01/2015)  
Author: Luhmann, A. J.
Volume: Vol. 19, Issue 1
Language: English
Subject: Science, Hydrology, Earth
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Historic
Publication Date:
2015
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Covington, M. D., Perne, M., Myre, J. M., Alexander Jr, E. C., Jones, S. W., Saar, M. O., & Luhmann, A. J. (2015). Thermal Damping and Retardation in Karst Conduits : Volume 19, Issue 1 (09/01/2015). Retrieved from http://hawaiilibrary.net/


Description
Description: University of Minnesota, Department of Earth Sciences, 310 Pillsbury Dr. SE, Minneapolis, Minnesota 55455, USA. Water temperature is a non-conservative tracer in the environment. Variations in recharge temperature are damped and retarded as water moves through an aquifer due to heat exchange between water and rock. However, within karst aquifers, seasonal and short-term fluctuations in recharge temperature are often transmitted over long distances before they are fully damped. Using analytical solutions and numerical simulations, we develop relationships that describe the effect of flow path properties, flow-through time, recharge characteristics, and water and rock physical properties on the damping and retardation of thermal peaks/troughs in karst conduits. Using these relationships, one can estimate the thermal retardation and damping that would occur under given conditions with a given conduit geometry. Ultimately, these relationships can be used with thermal damping and retardation field data to estimate parameters such as conduit diameter. We also examine sets of numerical simulations where we relax some of the assumptions used to develop these relationships, testing the effects of variable diameter, variable velocity, open channels, and recharge shape on thermal damping and retardation to provide some constraints on uncertainty. Finally, we discuss a multitracer experiment that provides some field confirmation of our relationships. High temporal resolution water temperature data are required to obtain sufficient constraints on the magnitude and timing of thermal peaks and troughs in order to take full advantage of water temperature as a tracer.

Summary
Thermal damping and retardation in karst conduits

Excerpt
Ashton, K.: The analysis of flow data from karst drainage systems, The Transactions of the Cave Research Group, 7, 161–203, 1966.; Atkinson, T. C.: Carbon dioxide in the atmosphere of the unsaturated zone: An important control of groundwater hardness in limestones, J. Hydrol., 35, 111–123, 1977a.; Atkinson, T. C.: Diffuse flow and conduit flow in limestone terrain in the Mendip Hills, Somerset (Great Britain), J. Hydrol., 35, 93–110, 1977b.; Beardsmore, G. R. and Cull, J. P.: Crustal Heat Flow: A Guide to Measurement and Modelling, Cambridge University Press, Cambridge, UK, 2001.; Benderitter, Y., Roy, B., and Tabbagh, A.: Flow characterization through heat transfer evidence in a carbonate fractured medium: first approach, Water Resour. Res., 29, 3741–3747, 1993.; Birk, S., Liedl, R., and Sauter, M.: Identification of localised recharge and conduit flow by combined analysis of hydraulic and physico-chemical spring responses (Urenbrunnen, SW-Germany), J. Hydrol., 286, 179–193, 2004.; Birk, S., Liedl, R., and Sauter, M.: Karst spring responses examined by process-based modeling, Ground Water, 44, 832–836, 2006.; Birk, S., Wagner, T., and Mayaud, C.: Threshold behavior of karst aquifers: the example of the Lurbach karst system (Austria), Environ. Earth Sci., 72, 1349–1356, doi:10.1007/s12665-014-3122-z, 2014.; Boussinesq, J.: Sur un mode simple d'écoulement des nappes d'eau d'infiltration à lit horizontal, avec rebord vertical tout autour lorsqu'une partie de ce rebord est enlevée depuis la surface jusqu'au fond, CR Acad. Sci., 137, 5–11, 1903.; Boussinesq, J.: Recherches théoretiques sur l'écoulement des nappes d'eau infiltrées dans le sol et sur le débit des sources, J. Math. Pure. Appl., 10, 5–78, 1904.; Bundschuh, J.: Temporal variations of spring water temperatures in relation to the extents of heat transport modes occurring in the karstified lower Gypsum-Keuper aquifer (Karnian, southern Germany), in: Proceedings of the 12th International Congress of Speleology, 6th Conference on Limestone Hydrology and Fissured Media, 10–17 August 1997, La Chaux de Fonds, Switzerland, Vol. 2, 129–132, 1997.; Covington, M. D., Wicks, C. M., and Saar, M. O.: A dimensionless number describing the effects of recharge and geometry on discharge from simple karstic aquifers, Water Resour. Res., 45, W11410, doi:10.1029/2009WR008004, 2009.; Covington, M. D., Luhmann, A. J., Gabrovšek, F., Saar, M. O., and Wicks, C. M.: Mechanisms of heat exchange between water and rock in karst conduits, Water Resour. Res., 47, W10514, doi:10.1029/2011WR010683, 2011.; Covington, M. D., Luhmann, A. J., Wicks, C. M., and Saar, M. O.: Process length scales and longitudinal damping in karst conduits, J. Geophys. Res.-Earth, 117, F01025, doi:10.1029/2011JF002212, 2012.; Dewandel, B., Lachassagne, P., Bakalowicz, M., Weng, P., and Al-Malki, A.: Evaluation of aquifer thickness by analysing recession hydrographs. Application to the Oman ophiolite hard-rock aquifer, J. Hydrol., 274, 248–269, 2003.; Doucette, R. and Peterson, E. W.: Identifying water sources in a karst aquifer using thermal signatures, Environ. Earth Sci., 72, 5171–5182, doi:10.1007/s12665-014-3387-2, 2014.; Field, M. S. and Nash, S. G.: Risk assessment methodology for karst aquifers: (1) Estimating karst conduit-flow parameters, Environ. Monit. Assess., 47, 1–21, 1997.; Field, M. S. and Pinsky, P. F.: A two-region nonequilibrium model for solute transport in solution conduits in karstic aquifers, J. Contam. Hydrol., 44, 329–351, 2000.; Ford, D. C. and Williams, P.: Karst Hydrogeology and Geomorphology, John Wiley & Sons, Chichester, England, 2007.; Gunn, J.: Analysis of groundwater p

 

Click To View

Additional Books


  • A Comparative Study of the Soil Solution... (by )
  • Indigenous Vegetation Burning Practices ... (by )
  • Evaporation in a Mediterranean Environme... (by )
  • Climate Information Based Streamflow and... (by )
  • Bench Scale Laboratory Tests to Analyze ... (by )
  • Comparison of Catchment Grouping Methods... (by )
  • Combining High-resolution Satellite Imag... (by )
  • Calibration and Downscaling of Seasonal ... (by )
  • An Effective Depression Filling Algorith... (by )
  • Correction of Systematic Model Forcing B... (by )
  • Satellite-based Analysis of Recent Trend... (by )
  • Water Balance of Selected Floodplain Lak... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.