World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Evaluating the Utah Energy Balance's (Ueb) Snow Model in the Noah Land-surface Model : Volume 10, Issue 11 (07/11/2013)

By Sultana, R.

Click here to view

Book Id: WPLBN0004011569
Format Type: PDF Article :
File Size: Pages 44
Reproduction Date: 2015

Title: Evaluating the Utah Energy Balance's (Ueb) Snow Model in the Noah Land-surface Model : Volume 10, Issue 11 (07/11/2013)  
Author: Sultana, R.
Volume: Vol. 10, Issue 11
Language: English
Subject: Science, Hydrology, Earth
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Historic
Publication Date:
2013
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Hsu, K., Sorooshian, S., Li, J., & Sultana, R. (2013). Evaluating the Utah Energy Balance's (Ueb) Snow Model in the Noah Land-surface Model : Volume 10, Issue 11 (07/11/2013). Retrieved from http://hawaiilibrary.net/


Description
Description: California State University, Long Beach, CA, USA. Noah (version 2.7.1), the community land-surface model (LSM) of NCEP-NCAR, which is widely used to describe the land-surface processes either in stand-alone or in coupled land–atmospheric model systems, is recognized because snow–water equivalent (SWE) can be underestimated. Noah's SWE bias can be attributed to its simple snow sub-model, which does not effectively describe the physical processes during snow accumulation and melt period. To improve SWE simulation in the Noah LSM, the Utah Energy Balance (UEB) snow model is implemented in Noah to test alternate snow-surface temperature and snow-melt outflow schemes. Snow surface temperature was estimated using force–restore method and snow melt event is regulated by accounting for the internal energy of the snowpack. The modified Noah SWE is compared with the SWE observed at California's NRCS SNOTEL stations for seven water years: 2002–2008, while the model snow-surface temperature is verified with observed surface-temperature data at an observation site in Utah. The experiments show that modification in Noah's snow process substantially reduced SWE estimation bias while keeping the simplicity of the Noah LSM. The results suggest that the model did not benefit from the alternate temperature representation but primary improvement can be attributed to the substituted snow melt process.

Summary
Evaluating the Utah Energy Balance's (UEB) snow model in the Noah Land-Surface Model

Excerpt
Albert, M. R. and Krajeski, G. N.: A fast, physically-based point snow melt model for distributed applications, Hydrol. Process., 12, 1809–1824, 1998.; Anderson, E. A.: A Point Energy and Mass Balance Model of a Snow Cover, NOAA Technical Report NWS 19, US Department of Commerce, Silver Springs, Maryland, 150 pp., 1976.; Arons, E. M. and Colbeck, S. C.: Geometry of heat and mass transfer in dry snow: a review of theory and experiment, Rev. Geophys., 33, 463–493, 1995.; Bengtsson, L.: Percolation of meltwater through a snowpack, Cold Reg. Sci. Technol., 6, 73–81, 1982.; Bhumralkar, C. M.: Numerical experiments on the computation of ground surface temperature in an atmospheric circulation model, J. Appl. Meteorol., 14, 1246–1258, 1975.; Barlage, M., Chen, F., Tewari, M., Ikeda, K., Gochis, D., Dudhia, J., Rasmussen, R., Livneh, B., Ek, M., and Mitchell, K.: Noah land surface model modifications to improve snowpack prediction in the Colorado Rocky Mountains, J. Geophys. Res., 115, D22101, doi:10.1029/2009JD013470, 2010.; Chen, F. and Dudhia, J.: Coupling an advanced land surface hydrology model with the Penn State-NCAR MM5 modeling system, Part 1: Model implementation and sensitivity, Mon. Weather Rev., 129, 569–585, 2.0.CO;2>doi:10.1175/1520-0493(2001)129<0587:CAALSH>2.0.CO;2, 2001.; Chen, F., Mitchell, K., Schaake, J., Xue, Y., Pan, H., Koren, V., Duan, Y., Ek, M., and Betts, A.: Modeling of land surface evaporation by four schemes and comparison with FIFE observations, J. Geophys. Res., 101, 7251–7268, doi:10.1029/95JD02165, 1996.; Eagleson, P. S.: Dynamic Hydrology, McGraw-Hill, New York, 462 pp., 1970.; Chen, F., Manning, K. W., LeMone, M. A., Trier, S. B., Alfierl, J. G., Roberts, R., Tewari, M., Niyogi, M., D., Horst, T. W., Oncley, S. P., Basara, J. B., and Blanken, P. D.: Description and evaluation of the characteristics of the NCAR High-resolution land data assimilation system, J. Appl. Meteorol. Clim., 46, 694–713, 2007.; Colbeck, S. C.: A theory of water percolation in snow, J. Glaciol., 11, 369–385, 1972.; Colbeck, S. C. and Anderson, E. A.: The permeability of a melting snow cover, Water Resour. Res., 18, 904–908, 1982.; Cosgrove, B. A., Lohmann, D., Mitchell, K. E., Houser, P. R., Wood, E. F., Schaake, J. S., Robock, A., Marshall, C., Sheffield, J., Duan, Q. Y., Luo, L. F., Higgins, R. W., Pinker, R. T., Tarpley, J. D., and Meng, J.: Real-time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project, J. Geophys. Res., 108, 8842, doi:10.1029/2002JD003118, 2003.; Dai, Y., Zeng, X., Dickinson, R. E., Baker, I., Bonan, G. B., Bosilovich, M. G., Denning, A. S., Dirmeyer, P. A., Houser, P. R., Niu, G., Oleson, K. W., Schlosser, C. A., and Yang, Z.-L.: The common land model (CLM), B. Am. Meteorol. Soc., 84, 1013–1023, 2003.; Deardorff, J. W.: Efficient prediction of ground surface temperature and moisture with inclusion of a layer of vegetation, J. Geophys. Res., 83, 1889–1903, 1978.; Denoth, A., Foglar, A., Weiland, P., Matzler, C., Aebischer, H., Tiuri, M., and Sihvola, A.: A comparative study of instruments for measuring the liquid water content of snow, J. Appl. Phys., 56, 2154–2160, 1984.; Dickinson, R. E.: The force-restore method for surface temperature and its generalization, J. Climate, 1, 1086–1097, 1988.; Dingman, S. L.: Physical Hydrology, Waveland Press Inc., Illinois, 645 pp., 2009.; Dunne, T., Price, A. G., and Colbeck, S. C.: The generation of runoff from subarctic snowpacks, Water Resour. Res., 12, 677–685, 1976.; Dickinson, R. E., Henderson-Sellers, A., Kennedy, P. J., and Giogi, F.: Biosphere–Atmosphere Transfer Scheme (BATS) Version 1e Coupled to the NCAR Community Climate Model, NCAR Techni

 

Click To View

Additional Books


  • Estimation of Surface Soil Moisture and ... (by )
  • Sensitivity and Uncertainty in Crop Wate... (by )
  • Comment on How Effective and Efficient A... (by )
  • Validation of Modis Snow Cover Images Ov... (by )
  • Vertical Hydraulic Conductivity of a Cla... (by )
  • Identifying Erosive Periods by Using Rus... (by )
  • Root Selection Methods in Flood Analysis... (by )
  • Reevaluation of Transit Time Distributio... (by )
  • Improving Catchment Discharge Prediction... (by )
  • How to Identify Groundwater-caused Therm... (by )
  • Comment on the Application of the Szilag... (by )
  • Integrated Response and Transit Time Dis... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.