World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Assimilation of Near-surface Cosmic-ray Neutrons Improves Summertime Soil Moisture Profile Estimates at Three Distinct Biomes in the USA : Volume 11, Issue 5 (27/05/2014)

By Rosolem, R.

Click here to view

Book Id: WPLBN0004012117
Format Type: PDF Article :
File Size: Pages 44
Reproduction Date: 2015

Title: Assimilation of Near-surface Cosmic-ray Neutrons Improves Summertime Soil Moisture Profile Estimates at Three Distinct Biomes in the USA : Volume 11, Issue 5 (27/05/2014)  
Author: Rosolem, R.
Volume: Vol. 11, Issue 5
Language: English
Subject: Science, Hydrology, Earth
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Historic
Publication Date:
2014
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Hoar, T., Arellano, A., Zeng, X., Anderson, J. L., Franz, T. E., Rosolem, R., & Shuttleworth, W. J. (2014). Assimilation of Near-surface Cosmic-ray Neutrons Improves Summertime Soil Moisture Profile Estimates at Three Distinct Biomes in the USA : Volume 11, Issue 5 (27/05/2014). Retrieved from http://hawaiilibrary.net/


Description
Description: Queens School of Engineering, University of Bristol, Bristol, UK. Aboveground cosmic-ray neutron measurements provide an opportunity to infer soil moisture at the sub-kilometer scale. Initial efforts to assimilate those measurements have shown promise. This study expands such analysis by investigating (1) how the information from aboveground cosmic-ray neutrons can constrain the soil moisture at distinct depths simulated by a land surface model, and (2) how changes in data availability (in terms of retrieval frequency) impact the dynamics of simulated soil moisture profiles. We employ ensemble data assimilation techniques in a nearly-identical twin experiment applied at semi-arid shrubland, rainfed agricultural field, and mixed forest biomes in the USA The performance of the Noah land surface model is compared without and with assimilation of observations at hourly intervals and every 2 days Synthetic observations of aboveground cosmic-ray neutrons better constrain the soil moisture simulated by Noah in root zone soil layers (0–100 cm) despite the limited measurement depth of the sensor (estimated to be 12–20 cm). The ability of Noah to reproduce a true soil moisture profile is remarkably good regardless of the frequency of observations at the semi-arid site. However, soil moisture profiles are better constrained when assimilating synthetic cosmic-ray neutrons observations hourly rather than every 2 days at the cropland and mixed forest sites. This indicates potential benefits for hydrometeorological modeling when soil moisture measurements are available at relatively high frequency. Moreover, differences in summertime meteorological forcing between the semi-arid site and the other two sites may indicate a possible controlling factor to soil moisture dynamics in addition to differences in soil and vegetation properties.

Summary
Assimilation of near-surface cosmic-ray neutrons improves summertime soil moisture profile estimates at three distinct biomes in the USA

Excerpt
Anderson, J. L.: An ensemble adjustment Kalman filter for data assimilation, Mon. Weather Rev., 129, 2884–2903, 2001.; Anderson, J. L.: A local least squares framework for ensemble filtering, Mon. Weather Rev., 131, 634–642, 2003.; Anderson, J. L.: Exploring the need for localization in ensemble data assimilation using a hierarchical ensemble filter, Physica D, 230, 99–111, doi:10.1016/j.physd.2006.02.011, 2007.; Anderson, J. L.: Ensemble Kalman filters for large geophysical applications, IEEE Contr. Syst. Mag., 29, 66–82, doi:10.1109/MCS.2009.932222, 2009.; Anderson, J. L., Hoar, T., Raeder, K., Liu, H., Collins, N., Torn, R., and Avellano, A.: The data assimilation research testbed: a community facility, B. Am. Meteorol. Soc., 90, 1283–1296, doi:10.1175/2009BAMS2618.1, 2009.; Baker, I. T., Denning, A. S., Hanan, N., Prihodko, L., Uliasz, M., Vidale, P. L., Davis, K., and Bakwin, P.: Simulated and observed fluxes of sensible and latent heat and CO2 at the WLEF-TV tower using SiB2. 5, Global Change Biol., 9, 1262–1277, 2003.; Baker, I. T., Prihodko, L., Denning, A. S., Goulden, M., Miller, S., and da Rocha, H. R.: Seasonal drought stress in the Amazon: reconciling models and observations, J. Geophys. Res., 113, G00B01, doi:10.1029/2007JG000644, 2008.; Dee, D. P.: Bias and data assimilation, Q. J. Roy. Meteor. Soc., 131, 3323–3343, doi:10.1256/qj.05.137, 2005.; Baldocchi, D. D.: Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future, Global Change Biol., 9, 479–492, 2003.; Best, M. J., Pryor, M., Clark, D. B., Rooney, G. G., Essery, R.L. H., Ménard, C. B., Edwards, J. M., Hendry, M. A., Porson, A., Gedney, N., Mercado, L. M., Sitch, S., Blyth, E., Boucher, O., Cox, P. M., Grimmond, C. S. B., and Harding, R. J.: The Joint UK Land Environment Simulator (JULES), model description – Part 1: Energy and water fluxes, Geosci. Model Dev., 4, 677–699, doi:10.5194/gmd-4-677-2011, 2011.; Blunden, J. and Arndt, D. S.: State of the climate in 2012, B. Am. Meteorol. Soc., 94, S1–S258, doi:10.1175/2013BAMSStateoftheClimate.2, 2013.; Bogena, H. R., Huisman, J. A., and Baatz, R.: Accuracy of the cosmic-ray soil water content probe in humid forest ecosystems: the worst case scenario, Water Resour. Res., 49, 5778–5791, doi:10.1002/wrcr.20463, 2013.; Bonan, G. B., Oleson, K. W., Vertenstein, M., Levis, S., Zeng, X., Dai, Y., Dickinson, R. E., and Yang, Z. L.: The land surface climatology of the Community Land Model coupled to the NCAR Community Climate Model*, J. Climate, 15, 3123–3149, 2002.; Brown, M. E., Escobar, V., Moran, S., Entekhabi, D., O'Neill, P. E., Njoku, E. G., Doorn, B., and Entin, J. K.: NASA's Soil Moisture Active Passive (SMAP) mission and opportunities for applications users, B. Am. Meteorol. Soc., 94, 1125–1128, doi:10.1175/BAMS-D-11-00049.1, 2013.; Chen, F. and Dudhia, J.: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity, Mon. Weather Rev., 129, 569–585, 2001.; Chen, F., Mitchell, K., Schaake, J., Xue, Y., Pan, H. L., Koren, V., Duan, Q. Y., Ek, M., and Betts, A.: Modeling of land surface evaporation by four schemes and comparison with FIFE observations, J. Geophys. Res., 101, 7251–7268, 1996.; Clark, D. B., Mercado, L. M., Sitch, S., Jones, C. D., Gedney, N.

 

Click To View

Additional Books


  • Gaining and Losing Stream Reaches Have O... (by )
  • Sensitivity of Simulated Global-scale Fr... (by )
  • A Virtual Water Network of the Roman Wor... (by )
  • Long-term Meteorological and Hydrologica... (by )
  • Integral Quantification of Seasonal Soil... (by )
  • Coevolution of Water Security in a Devel... (by )
  • Evaluation of Drought Indices at Interan... (by )
  • Reconstructing the Duty of Water: a Stud... (by )
  • An Empirical Method for Estimating Futur... (by )
  • Food Consumption Patterns and Their Effe... (by )
  • Climate Change, Growing Season Water Def... (by )
  • Subsurface Lateral Flow from Hillslope a... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.