World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Fractal Dimensions of Wildfire Spreading : Volume 21, Issue 4 (07/08/2014)

By Wang, S.-l.

Click here to view

Book Id: WPLBN0004013922
Format Type: PDF Article :
File Size: Pages 9
Reproduction Date: 2015

Title: Fractal Dimensions of Wildfire Spreading : Volume 21, Issue 4 (07/08/2014)  
Author: Wang, S.-l.
Volume: Vol. 21, Issue 4
Language: English
Subject: Science, Nonlinear, Processes
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Li, S., Lee, H., & Wang, S. (2014). Fractal Dimensions of Wildfire Spreading : Volume 21, Issue 4 (07/08/2014). Retrieved from

Description: Institute of Physics, Academia Sinica 128 Sec. 2, Academia Rd., Nankang, Taipei, 11529, Taiwan (ROC). The time series data of 31 wildfires in 2012 in the US were analyzed. The fractal dimensions (FD) of the wildfires during spreading were studied and their geological features were identified. A growth model based on the cellular automata method is proposed here. Numerical study was performed and is shown to give good agreement with the fractal dimensions and scaling behaviors of the corresponding empirical data.

Fractal dimensions of wildfire spreading

Alexandridis, A., Vakalis, D., Siettos, C. I., and Bafas, G. V.: A cellular automata model for forest fire spread prediction: The case of the wildfire that swept through Spetses Island in 1990, Appl. Math. Comput., 204, 191–201, 2008.; Anderson, D. G., Catchpole, E. A., DeMestre, N. J., and Parkes, E.: Modeling the spread of grass fires, J. Austral. Math. Soc., Series B, 23, 451–466, 1982.; Bak, P., Chen, K., and Tang, C.: A forest-fire model and some thoughts on turbulence, Phys. Lett. A, 147, 297–300, 1990.; Avolio, M. V., Di Gregorio, S., Spataro, W., and Trunfio, G. A.: A theorem about the algorithm of minimization of differences for multicomponent cellular automata, Lect. Not. Comp. Sc., 7495, 289–298, 2012.; Caldarelli, G., Frondoni, R., Gabrielli A., Montuori, M., Retzlaff, R., and Ricotta, C.: Percolation in real wildfires, Europhys. Lett., 56, 510, doi:10.1209/epl/i2001-00549-4, 2001.; Chen, K., Bak, P., and Jensen, M. H.: A deterministic critical forest fire model, Phys. Lett. A, 149, 207–210, 1990.; Coxeter, H. S. M.: Regular polytopes, Dover Publications, NY, 1973.; Hernandez Encinas, L., Hoya White, S., Martin del Rey, A., and Rodriguez Sanchez, G.: Modelling forest fire spread using hexagonal cellular automata, Appl. Math. Model., 31, 1213–1227, 2007.; Geomac, (last access: July 2014), 2012.; Kitzberger, T., Brown, P. M., Heyerdahl, E. K., Swetnam, T. W., and Veblen, T. T.: Contingent Pacific-Atlantic Ocean influence on multicentury wildfire synchrony over western North America, P. Natl. Acad. Sci. USA, 104, 543–548, 2007.; Lee, H.-I., Wang, S.-L., and Li, S.-P.: Climate Effect on Wildfire Burned Area in Alberta (1961–2010), Int. J. Mod. Phys. C, 24, 1350053, doi:10.1142/S0129183113500538, 2013.; Littell, J. S., McKenzie, D., Peterson, D. L., and Westerling, A. L.: Climate and Ecoprovince Fire Area Burned in Western U.S. Ecoprovinces, 1916–2003, J. Appl. Meteor. Climatol., 19, 1003–1021, 2009.; Matthew, S. G., Platt, W. J., Beckage, B., Orzell, S. L., and Taylor, W.: Accurate quantification of Seasonal Rainfall and Associated Climate-Wildfire Relationships, J. Appl. Meteor. Climatol., 49, 2559–2573, 2010.; Mckenzie, D., Peterson, D. L., and Alvarado, E.: Extrapolation problems in modeling fire effects at large spatial scales, Int. J. Wildland Fire, 6, 165–176, 1996.; Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E.: Equation of State Calculations by Fast Computing Machines, J. Chem. Phys., 21, 1087, doi:10.1063/1.1699114, 1953.; Niessen, W. V. and Blumen, A.: Dynamics of forest fires as a directed percolation model, J. Phys. A, 19, L289, doi:10.1088/0305-4470/19/5/013, 1986.; Porterie, B., Zekri, N., Clerc, J. P., and Loraud, J. C.: Modeling forest fire spread and spotting process with small world networks, Comb. Flame, 149, 12, 63–78, 2007.; Romme, W. H.: Fire and landscape diversity in subalpine forests of Yellowstone National Park, Ecol. Monogr. 52, 199–221, 1982.; Rothermel, R. C.: A mathematical model for predicting fire spread in wildland fuels, Intermountain Forest and Range Experiment Station, Forest Service, US Department of Agriculture, INT 115 Odgen, Utah, USA, 1972.; Sullivan, A. L.: Wildland surface fire spread modelling, 1990–2007. 1: Physical and quasi-physical models, Int. J. Wildland Fire, 18, 349–368, 2009a.; Sullivan, A. L.: Wildland surface fire spread modelling, 1990–2007. 2: Empirical and quasi-empirical models, Int. J. Wildland Fire, 18, 369–386, 2009b.; Sullivan, A. L.: Wildland surface fire spread modelling, 1990–2007. 3: Simulation and mathematical analogue models, Int. J. Wildland Fire, 18, 387–403, 2


Click To View

Additional Books

  • Reply to J. F. McKenzie Et Al.'s Comment... (by )
  • Conditions for Large Earthquakes in a Tw... (by )
  • Solute Transport in a Heterogeneous Aqui... (by )
  • Identification of Dynamical Transitions ... (by )
  • Generation of Weakly Nonlinear Nonhydros... (by )
  • Steep Unidirectional Wave Groups – Fully... (by )
  • Local Predictability in a Simple Model o... (by )
  • Observational Tests of the Properties of... (by )
  • Coupling Between Reconnection and Kelvin... (by )
  • Lower-hybrid (Lh) Oscillitons Evolved fr... (by )
  • Instabilities in a Thin Current Sheet an... (by )
  • Forecasting Characteristic Earthquakes i... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.