World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Influence of Stability on the Flux-profile Relationships for Wind Speed, ΦM, and Temperature, ΦH, for the Stable Atmospheric Boundary Layer : Volume 13, Issue 2 (21/06/2006)

By Yagüe, C.

Click here to view

Book Id: WPLBN0004019754
Format Type: PDF Article :
File Size: Pages 19
Reproduction Date: 2015

Title: Influence of Stability on the Flux-profile Relationships for Wind Speed, ΦM, and Temperature, ΦH, for the Stable Atmospheric Boundary Layer : Volume 13, Issue 2 (21/06/2006)  
Author: Yagüe, C.
Volume: Vol. 13, Issue 2
Language: English
Subject: Science, Nonlinear, Processes
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Historic
Publication Date:
2006
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Redondo, J. M., Maqueda, G., Viana, S., & Yagüe, C. (2006). Influence of Stability on the Flux-profile Relationships for Wind Speed, ΦM, and Temperature, ΦH, for the Stable Atmospheric Boundary Layer : Volume 13, Issue 2 (21/06/2006). Retrieved from http://hawaiilibrary.net/


Description
Description: Dpto. Geofísica y Meteorología, Universidad Complutense de Madrid, Spain. Data from SABLES98 experimental campaign have been used in order to study the influence of stability (from weak to strong stratification) on the flux-profile relationships for momentum, Φm, and heat, Φh. Measurements from 14 thermocouples and 3 sonic anemometers at three levels (5.8, 13.5 and 32 m) for the period from 10 to 28 September 1998 were analysed using the framework of the local-scaling approach (Nieuwstadt, 1984a; 1984b), which can be interpreted as an extension of the Monin-Obukhov similarity theory (Obukhov, 1946). The results show increasing values of Φm and Φh with increasing stability parameter Ζ=z/Λ, up to a value of Ζ≈1–2, above which the values remain constant. As a consequence of this levelling off in Φm and Φh for strong stability, the turbulent mixing is underestimated when linear similarity functions (Businger et al., 1971) are used to calculate surface fluxes of momentum and heat. On the other hand when Φm and Φh are related to the gradient Richardson number, Ri, a different behaviour is found, which could indicate that the transfer of momentum is greater than that of heat for high Ri. The range of validity of these linear functions is discussed in terms of the physical aspects of turbulent intermittent mixing.

Summary
Influence of stability on the flux-profile relationships for wind speed, Φm, and temperature, Φh, for the stable atmospheric boundary layer

Excerpt
Arya, S. P. S.: Introduction to Micrometeorology, 2nd edition, International Geophysics Series, Academic Press, London., 2001.; Babiano, A., Dubrulle, B., and Frick, P.: Some properties of two dimensional inverse energy cascade dynamics, Phys. Rev. E., 55, 2693–2706, 1997.; Beljaars, A. C. M. and Holtslag, A. A.: Flux parameterization over land surfaces for atmospheric models, J. Appl. Meteorol., 30, 327–341, 1991.; Basu, S.: Large-eddy simulation of the stably stratified atmospheric boundary layer turbulence: a scale-dependent dynamic \mboxmodelling approach, PhD Thesis, Department of Civil Engineering, University of Minnesota, 114, 2004.; Benzi R., Ciliberto S., Tripiccione R., Baudet, C., Masssaioli, F., and Succi, S.: Extended self-similarity in turbulent flows, Phys. Rev. E., 48, 29–32, 1993.; Berman, S., Ku, J. Y., Zhang, J., and Trivikrama, R.: Uncertainties in estimating the mixing depth. Comparing three mixing depth models with profiler measurements, Atmos. Environ., 31, 3023–3039, 1997.; Boussinesq, J.: Essai sur la theorie des eaux courants, Mem. Pres. Par div. Savants a l'Academie Sci., Paris, 23, 1–680. 1877.; Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: Flux-profile relationships in the atmospheric surface layer, J. Atmos. Sci., 28, 181–189, 1971.; Frisch, U.: Turbulence: The legacy of A. N. Kolmogorov, Cambridge University Press, 1995.; Handorf, D., Foken, T., and Kottmeier, C.: The stable atmospheric boundary layer over an antarctic ice sheet, Bound-Layer Meteorol., 91, 165–189, 1999.; Carrillo, A., Sanchez, M. A., Platonov, A., and Redondo, J. M: Coastal and Interfacial Mixing. Laboratory Experiments and Satellite Observations, Physics and Chemistry of the Earth, part B, 26, 305–311, 2001.; Cheng, Y. and Brutsaert, W.: Flux-profile relationships for wind speed and temperature in the stable atmospheric boundary layer, Bound-Layer Meteorol., 114, 519–538, 2005.; Cuxart, J., Yagüe, C., Morales, G., Terradellas. E., Orbe, J., Calvo, J., Fernandez, A., Soler, M. R., Infante, C, Buenestado, P., Espinalt, A., Joergensen, H. E., Rees, J. M., Vilà, J., Redondo, J. M., Cantalapiedra, I. R., and Conangla, L.: Stable Atmospheric Boundary Layer Experiment in Spain (SABLES 98): A report, Bound-Layer Meteorol., 96, 337–370, 2000.; Cheng, Y. and Brutsaert, W.: Flux-profile relationships for wind speed and temperature in the stable atmospheric boundary layer, Bound-Layer Meteorol., 114, 519–538, 2005.; Derbyshire, S. H.: Stable boundary-layer modelling: Established approaches and beyond, Bound-Layer Meteorol., 90, 423–446, 1999.; Derbyshire, S. H. and Redondo, J. M.: Fractals and waves, some geometrical approaches to stably-stratified turbulence, Anales de Física, Serie A, 86, 67–76, 1990.; Duynkerke, P. G.: Turbulence, radiation and fog in Dutch stable boundary layers, Bound-Layer Meteorol., 90, 447–477, 1999.; Dyer, A. J.: A review of flux-profile relationships, Bound-Layer Meteorol., 7, 363–372, 1974.; Esau, I. N.: Parameterization of a surface drag coefficient in conventionally neutral planetary boundary layer, Ann. Geophys. 22, 3353–3362, 2004.; Forrer, J. and Rotach, M. W.: On the turbulence structure in the stable boundary layer over the Greenland Ice Sheet, Bound-Layer Meteorol., 85, 111–136, 1997.; Finnigan, J. J., Einaudi, F., and Fua, D.: The interaction between an internal gravity wave and turbulence in the stably-stratified nocturnal boundary layer, J. Atmos. Sci., 41, 2409–2436, 1984.; Gibson, C. H.: Kolmogorov similarity hypotheses for scalar fields: sampling intermittent turbulent mixing in the ocean and galaxy, Proc. R. Soc. Lond. A 434, 149–164, 1991.; Grachev, A. A., Fairall, C. W., Persson, P. O. G., Andreas, E. L., and Guest, P. S.: Stable boundary-layer scaling regimes: The Sheba Data., Bound-Layer

 

Click To View

Additional Books


  • Particle Dispersion Processes in Two-dim... (by )
  • Nonlinear Analysis of Magnetospheric Dat... (by )
  • Scaling and Multifractal Fields in the S... (by )
  • Error Growth and Dynamical Vectors Durin... (by )
  • Projection of Compact Fractal Sets: Appl... (by )
  • Anomalous Width Variation of Rarefactive... (by )
  • Automatic Extraction of Faults and Fract... (by )
  • Venus Atmosphere Profile from a Maximum ... (by )
  • A Hybrid Variational Ensemble Data Assim... (by )
  • Evolution of Atmospheric Connectivity in... (by )
  • Tempting Long-memory - on the Interpreta... (by )
  • Long-term Predictability of Mean Daily T... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.