World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Strongly Nonlinear Steepening of Long Interfacial Waves : Volume 14, Issue 3 (08/06/2007)

By Zahibo, N.

Click here to view

Book Id: WPLBN0004019822
Format Type: PDF Article :
File Size: Pages 10
Reproduction Date: 2015

Title: Strongly Nonlinear Steepening of Long Interfacial Waves : Volume 14, Issue 3 (08/06/2007)  
Author: Zahibo, N.
Volume: Vol. 14, Issue 3
Language: English
Subject: Science, Nonlinear, Processes
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Pelinovsky, E., Polukhina, O., Slunyaev, A., Talipova, T., Zahibo, N., & Kurkin, A. (2007). Strongly Nonlinear Steepening of Long Interfacial Waves : Volume 14, Issue 3 (08/06/2007). Retrieved from

Description: Département de Physique, Université des Antilles et de la Guyane, Guadeloupe, France. The transformation of nonlinear long internal waves in a two-layer fluid is studied in the Boussinesq and rigid-lid approximation. Explicit analytic formulation of the evolution equation in terms of the Riemann invariants allows us to obtain analytical results characterizing strongly nonlinear wave steepening, including the spectral evolution. Effects manifesting the action of high nonlinear corrections of the model are highlighted. It is shown, in particular, that the breaking points on the wave profile may shift from the zero-crossing level. The wave steepening happens in a different way if the density jump is placed near the middle of the water bulk: then the wave deformation is almost symmetrical and two phases appear where the wave breaks.

Strongly nonlinear steepening of long interfacial waves

Afanasyev, Ya. D. and Pelter, W. R.: On breaking internal waves over the sill in Knight Inlet, Proc. Royal Society London, A457, 2799–2825, 2001.; Armi, L. and Farmer, D.: Stratified flow over topography bifurcation fronts and transition to the uncontrolled state, Proc. Royal Society London, A457, 2827–2830, 2001.; Baines, P. G.: Topographic effects in stratified flows, Cambridge University Press, 1995.; Chant, R. and Wilson, R.: Internal hydraulics and mixing in highly stratified estuary, J. Geophys. Res., 105(C6), 14 215–14 222, 2000.; Craik, A. D.: Wave interactions and fluid flows, Cambridge University Press, 1985.; Fringer, O. B. and Street, R. L.: The dynamics of breaking progressive interfacial waves, J. Fluid Mech., 494, 319–353, 2003.; Grimshaw, R. (Ed): Environmental stratified flows, Kluwer Acad. Publ., 2002.; Helfrich, K. R. and Melville, W. K.: Long nonlinear internal waves, Annu. Rev. Fluid Mech., 38, 395–425, 2006.; Henyey, F. S. and Hoering, A.: Energetic of borelike internal waves, J. Geophys. Res., 102(C2), 3323–3330, 1997.; Holland, D., Rosales, R., Stefanica, D., and Tabak, E.: Internal hydraulic jumps and mixing in two-layer flows, J. Fluid Mech., 470, 63–83, 2002.; Horn, D. A., Imberger, J., and Ivey, G. N.: The degeneration of large-scale interfacial gravity waves in lakes, J. Fluid Mech., 434, 181–207, 2001.; Kakutani, T. and Yamasaki, N.: Solitary waves on a two-layer fluid, J. Phys. Soc. Japan, 45, 2, 674–679, 1978.; Klemp, J. B., Rottuno, R., and Skamarock, W.C.: On the propagation of internal bores, J. Fluid Mech., 331, 81–106, 1997.; Lyapidevsky, V. Yu. and Teshukov, V. M.: Mathematical models of long wave propagation in inhomogeneous fluid, Nauka, Novosibirsk, (in Russian) 2000.; Milewski, P. A., Tabak, E. G., Turner, C. V., Rosales, R. R. and Menzaque, F.: Nonlinear stability of two-layer flows, Comm. Math. Sci., 2, 427–442, 2004.; Miropol'sky, Yu. Z.: Dynamics of internal gravity waves in the ocean, Kluwer, 2001.; Munk, W. and Wunsh, C.: The Moon and mixing abyssal recipes II, Deep-Sea Res. I, 45, 1977–2010, 1998.; Ostrovsky, L. A. and Grue, J.: Evolution equations for strongly nonlinear internal waves, 15, 10, 2934–2948, 2003.; Pelinovsky, E. N.: Spectral analysis of simple waves, Radiophysics and Quantum Electronics, 19, 3, 262–270, 1976.; Polukhina, O. E. and Slunyaev, A. V.: An improved evolution model on the basis of the Gardner equation for internal waves in a stratified fluid, Izvestiya Russian Academy Engineering Science, 18, 82–90, (in Russian) 2006.; Rudenko, O. V. and Soluyan, S. I.: Theoretical foundations of nonlinear acoustics, New York, Consultants Bureau, 1977.; Sakai, T. and Redekopp, L. G.: Models for strongly-nonlinear evolution of long internal waves in a two-layer stratification, Nonlin. Processes Geophys., 14, 31–47, 2007.; Slunyaev, A., Pelinovsky, E., Poloukhina, O. and Gavrilyuk, S.: The Gardner equation as the model for long internal waves, Proc. Int. Symp. Topical Problems of Nonlinear Wave Physics (Nizhny Novgorod), 368–369, 2003.; Witham, G. B.: Linear and nonlinear waves, John Wiley & Sons, 1974.


Click To View

Additional Books

  • Observing Spatio-temporal Clustering and... (by )
  • Nonlinear Multivariable Analysis of Soi ... (by )
  • Forced Versus Coupled Dynamics in Earth ... (by )
  • Parallel and Perpendicular Cascades in S... (by )
  • Probing the Linearity and Nonlinearity i... (by )
  • Nucleation and Growth of Geological Faul... (by )
  • An Implementation of the Local Ensemble ... (by )
  • Comment on Obliquely Propagating Large A... (by )
  • Energetic Particle Parallel Diffusion in... (by )
  • Upper Stratospheric Ozone Decrease Event... (by )
  • Corrigendum to Holocene Climate Variabil... (by )
  • Asymmetric Tide in Lake Vallunden (Spits... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.