World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Spectral Diagonal Ensemble Kalman Filters : Volume 22, Issue 4 (18/08/2015)

By Kasanický, I.

Click here to view

Book Id: WPLBN0004019848
Format Type: PDF Article :
File Size: Pages 13
Reproduction Date: 2015

Title: Spectral Diagonal Ensemble Kalman Filters : Volume 22, Issue 4 (18/08/2015)  
Author: Kasanický, I.
Volume: Vol. 22, Issue 4
Language: English
Subject: Science, Nonlinear, Processes
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Historic
Publication Date:
2015
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Vejmelka, M., Mandel, J., & Kasanický, I. (2015). Spectral Diagonal Ensemble Kalman Filters : Volume 22, Issue 4 (18/08/2015). Retrieved from http://hawaiilibrary.net/


Description
Description: Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague, Czech Republic. A new type of ensemble Kalman filter is developed, which is based on replacing the sample covariance in the analysis step by its diagonal in a spectral basis. It is proved that this technique improves the approximation of the covariance when the covariance itself is diagonal in the spectral basis, as is the case, e.g., for a second-order stationary random field and the Fourier basis. The method is extended by wavelets to the case when the state variables are random fields which are not spatially homogeneous. Efficient implementations by the fast Fourier transform (FFT) and discrete wavelet transform (DWT) are presented for several types of observations, including high-dimensional data given on a part of the domain, such as radar and satellite images. Computational experiments confirm that the method performs well on the Lorenz 96 problem and the shallow water equations with very small ensembles and over multiple analysis cycles.

Summary
Spectral diagonal ensemble Kalman filters

Excerpt
Boer, G. J.: Homogeneous and isotropic turbulence on the sphere, J. Atmos. Sci., 40, 154–163, 2.0.CO;2>doi:10.1175/1520-0469(1983)040<0154:HAITOT>2.0.CO;2, 1983.; Anderson, B. D. O. and Moore, J. B.: Optimal Filtering, Prentice-Hall, Englewood Cliffs, NJ, 1979.; Anderson, J. L.: An ensemble adjustment Kalman filter for data assimilation, Mon. Weather Rev., 129, 2884–2903, 2.0.CO;2>doi:10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2, 2001.; Beezley, J. D., Mandel, J., and Cobb, L.: Wavelet ensemble Kalman filters, in: Vol. 2, Proceedings of IEEE IDAACS'2011, 15–17 September 2011, Prague, 514–518, doi:10.1109/IDAACS.2011.6072819, 2011.; Berre, L.: Estimation of synoptic and mesoscale forecast error covariances in a limited-area model, Mon. Weather Rev., 128, 644–667, 2.0.CO;2>doi:10.1175/1520-0493(2000)128<0644:EOSAMF>2.0.CO;2, 2000.; Berre, L., Pannekoucke, O., Desroziers, G., Stefanescu, S., Chapnik, B., and Raynaud, L.: A variational assimilation ensemble and the spatial filtering of its error covariances: increase of sample size by local spatial averaging, http://old.ecmwf.int/publications/library/ecpublications/_pdf/workshop/2007/Data_assimilation/Berre.pdf (last access 7 August 2015), 2007.; Buehner, M.: Ensemble-derived stationary and flow-dependent background-error covariances: Evaluation in a quasi-operational NWP setting, Q. J. Roy. Meteorol. Soc., 131, 1013–1043, doi:10.1256/qj.04.15, 2005.; Buehner, M. and Charron, M.: Spectral and spatial localization of background-error correlations for data assimilation, Q. J. Roy. Meteorol. Soc., 133, 615–630, doi:10.1002/qj.50, 2007.; Burgers, G., van Leeuwen, P. J., and Evensen, G.: Analysis scheme in the ensemble Kalman filter, Mon. Weather Rev., 126, 1719–1724, 1998.; Courtier, P., Andersson, E., Heckley, W., Vasiljevic, D., Hamrud, M., Hollingsworth, A., Rabier, F., Fisher, M., and Pailleux, J.: The ECMWF implementation of three-dimensional variational assimilation (3D-Var), I: Formulation, Q. J. Roy. Meteorol. Soc., 124, 1783–1807, doi:10.1002/qj.49712455002, 1998.; Da Prato, G.: An Introduction to Infinite-Dimensional Analysis, Springer-Verlag, Berlin, doi:10.1007/3-540-29021-4, 2006.; Daubechies, I.: Ten Lectures on Wavelets, Vol. 61, CBMS-NSF Regional Conference Series in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, doi:10.1137/1.9781611970104, 1992.; Deckmyn, A. and Berre, L.: A Wavelet Approach to Representing Background Error Covariances in a Limited-Area Model, Mon. Weather Rev., 133, 1279–1294, doi:10.1175/MWR2929.1, 2005.; Derber, J. and Bouttier, F.: A reformulation of the background error covariance in the ECMWF global data assimilation system, Tellus A, 51, 195–221, doi:10.1034/j.1600-0870.1999.t01-2-00003.x, 1999.; Evensen, G.: Data Assimilation: The Ensemble Kalman Filter, 2nd Edn., Springer, Berlin, doi:10.1007/978-3-642-03711-5, 2009.; Fisher, M.: Background error covariance modelling, in: Proceedings of the ECMWF Seminar on Recent

 

Click To View

Additional Books


  • Horizontal Circulation and Jumps in Hami... (by )
  • Head-on Collision of Two Solitary Waves ... (by )
  • Fourier Spectrum and Shape Evolution of ... (by )
  • Conjugate Flows and Amplitude Bounds for... (by )
  • Critical Behavior in Earthquake Energy D... (by )
  • Asymmetry of Wind Waves Studied in a Lab... (by )
  • Evolutionary Modeling-based Approach for... (by )
  • Extremum Statistics: a Framework for Dat... (by )
  • Expanding the Validity of the Ensemble K... (by )
  • Reply to T. Schneider's Comment on Spati... (by )
  • Dinoflagellate Bioluminescence in Respon... (by )
  • An Intercomparison of Burnt Area Estimat... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.