World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Self-organization of Ulf Electromagnetic Wave Structures in the Shear Flow Driven Dissipative Ionosphere : Volume 1, Issue 2 (26/08/2014)

By Aburjania, G.

Click here to view

Book Id: WPLBN0004020071
Format Type: PDF Article :
File Size: Pages 34
Reproduction Date: 2015

Title: Self-organization of Ulf Electromagnetic Wave Structures in the Shear Flow Driven Dissipative Ionosphere : Volume 1, Issue 2 (26/08/2014)  
Author: Aburjania, G.
Volume: Vol. 1, Issue 2
Language: English
Subject: Science, Nonlinear, Processes
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Chargazia, K., Zimbardo, G., Kharshiladze, O., & Aburjania, G. (2014). Self-organization of Ulf Electromagnetic Wave Structures in the Shear Flow Driven Dissipative Ionosphere : Volume 1, Issue 2 (26/08/2014). Retrieved from

Description: I. Vekua Institute of Applied Mathematics, Tbilisi State University, 2 University str., 0143 Tbilisi, Georgia. This work is devoted to investigation of nonlinear dynamics of planetary electromagnetic (EM) ultra-low-frequency wave (ULFW) structures in the rotating dissipative ionosphere in the presence of inhomogeneous zonal wind (shear flow). Planetary EM ULFW appears as a result of interaction of the ionospheric medium with the spatially inhomogeneous geomagnetic field. The shear flow driven wave perturbations effectively extract energy of the shear flow increasing own amplitude and energy. These perturbations undergo self organization in the form of the nonlinear solitary vortex structures due to nonlinear twisting of the perturbation's front. Depending on the features of the velocity profiles of the shear flows the nonlinear vortex structures can be either monopole vortices, or dipole vortex, or vortex streets and vortex chains. From analytical calculation and plots we note that the formation of stationary nonlinear vortex structure requires some threshold value of translation velocity for both non-dissipation and dissipation complex ionospheric plasma. The space and time attenuation specification of the vortices is studied. The characteristic time of vortex longevity in dissipative ionosphere is estimated. The long-lived vortices transfer the trapped medium particles, energy and heat. Thus they represent structural elements of turbulence in the ionosphere.

Self-organization of ULF electromagnetic wave structures in the shear flow driven dissipative ionosphere

Aburjania, G.: Structural turbulences and diffusion of plasmas in the magnetic traps, Plasma Phys. Rep., 16, 70–76, 1990.; Aburjania, G.: Self-organization of acoustic-gravity vortices in the ionosphere before earthquake, Plasma Phys. Rep., 22, 954–959, 1996.; Aburjania, G.: Self-Organization of Nonlinear Vortex Structures and Vortex Turbulence in Dispersive Media, KomKniga, Moscow, 2006 (in Russian).; Aburjania, G.: Formation of strong stationary vortex turbulence in the terrestrial magnetosheat, Geomagn. Aeron., 51, 6, 720–729, 2011.; Aburjania, G. and Chargazia, Kh.: Dynamics of the large-scale ULF electromagnetic wave structures in the ionosphere, J. Atmos. Sol.-Terr. Phy., 69, 2428–2441, 2007.; Aburjania, G. and Machabeli, G.: Generation of electromagnetic perturbations by acoustic waves in the ionosphere, J. Geophys. Res. A, 103, 9441–9447, 1998.; Aburjania, G., Khantadze, A., and Kharshiladze, O.: Nonlinear planetary electromagnetic vortex structures in the ionosphere F-layer, Plasma Phys. Rep., 28, 586–591, 2002.; Abururjania, G., Jandieri, G., and Khantadze, A.: Self-organization of planetary electromagnetic waves in E-region of the ionosphere, J. Atmos. Sol.-Terr. Phy., 65, 661–671, 2003.; Aburjania, G. D., Chargazia, K. Z., Jandieri, G. V., Khantadze, A. G., and Kharshiladze, O. A.: On the new modes of planetary-scale electromagnetic waves in the ionosphere, Ann. Geophys., 22, 1203–1211, doi:10.5194/angeo-22-1203-2004, 2004.; Aburjania, G., Khantadze, A., and Kharshiladze, O.: Mechanism of planetary Rossby wave amplification and transformation in the ionosphere with an inhomogeneous zonal smooth shear wind, J. Geophys. Res., 111, A09304, doi:10.1029/2005JA011567, 2006.; Aburjania, G. D., Chargazia, Kh. Z., Zelenyi, L. M., and Zimbardo, G.: Model of strong stationary vortex turbulence in space plasmas, Nonlin. Processes Geophys., 16, 11–22, doi:10.5194/npg-16-11-2009, 2009.; Al'perovich, L. and Fedorov, E.: Hydromagnetic Waves in the Magnetosphere and the Ionosphere, Springer, Series: Astrophysics and Space Science Library, Vol. 353, ISBN:978-1-4020-6636-8, 2007.; Bengtsson, L. and Lighthill, J. (Eds.): Intense Atmospheric Vorticesk, Springer-Verlag, Berlin, Heidelberg, 1982.; Al'perovich, L., Drobgev, V., and Sorokin, V.: On the midlatitude oscillations of thegeomagnetic field and its connection to the dynamical processes in the ionosphere, Geomagn. Aeron., 22, 797–802, 1982.; Burmaka, V. and Chernogor, L.: Clustered-instrument studies of ionospheric wave disturbances accompanying rocket launches against the background of non-stationary natural processes, Geomagn. Aeron., 44, 3, 518–534, 2004.; Cavalieri, D., Deland, R., Poterna, J., Gavin, R.: The correlation of VLF propagation variations with atmospheric planetary-scale waves, J. Atmos. Terr. Phys., 36, 561–574, 1974.; Chagelishvili, G., Rogava, A., and Tsiklauri, D.: The effect of coupling and linear transformation of waves in shear flows, Phys. Rev. E, 53, 6028–6031, 1996.; Cmyrev, V., Marchenco, V., Pokhotelov, O., Stenflo, L., Strel'tsov, A., and Steen, A.: Vortex structures in the ionosphere and magnetosphere of the Earth, Planet Space Sci., 39, 1025–1030, 1991.; Fagundas, P., Pillat, V., Bolzan, M., Sahai, Y., Becker-Guedes, F., Abalde, J., Aranha, S., and Bittencourt, J.: Observation of F-layer electron density profiles modulated by planetary wave type oscillations in the equatorial ionospheric anomaly region, J. Geophys. Res., 110, A12, doi:10.1029/2005JA011115, 2005.; Fairfield, D. H., Otto, A., Mukai, T., Kokubun, S., Lepping, R. P., Steinberg, J. T., Lazarus, A. J., and Yamamoto, T.: Geotail observations of the Kelvin–Helmholtz instability at the equatorial magnetotail boundary for parallel northward fields, J. Geophys. Res., 105, 21159–21173


Click To View

Additional Books

  • Size Distribution and Structure of Barch... (by )
  • On the Two-day Oscillations and the Day-... (by )
  • Prediction of the Stochastic Behaviour o... (by )
  • Wave Turbulence in Magnetized Plasmas : ... (by )
  • Detection and Predictive Modeling of Cha... (by )
  • Brief Communication Spatial and Temporal... (by )
  • Trans-sonic Cusped Shaped, Periodic Wave... (by )
  • On the Scaling Characteristics of Observ... (by )
  • Incidence and Reflection of Internal Wav... (by )
  • Horton Laws for Hydraulic-geometric Vari... (by )
  • A 2-d Fem Thermal Model to Simulate Wate... (by )
  • Stochastic Resonance: from Climate to Bi... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.