World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Self-breeding: a New Method to Estimate Local Lyapunov Structures : Volume 1, Issue 2 (09/09/2014)

By Keller, J. D.

Click here to view

Book Id: WPLBN0004020073
Format Type: PDF Article :
File Size: Pages 29
Reproduction Date: 2015

Title: Self-breeding: a New Method to Estimate Local Lyapunov Structures : Volume 1, Issue 2 (09/09/2014)  
Author: Keller, J. D.
Volume: Vol. 1, Issue 2
Language: English
Subject: Science, Nonlinear, Processes
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Keller, J. D., & Hense, A. (2014). Self-breeding: a New Method to Estimate Local Lyapunov Structures : Volume 1, Issue 2 (09/09/2014). Retrieved from

Description: Hans-Ertel-Centre for Weather Research, Bonn, Germany. We present a new approach to estimate local Lyapunov vectors. The so called self-breeding method is based on the breeding of growing modes technique from medium range weather forecasting and consists of a continuous forecasting and rescaling cycle. Using the Lorenz96 model we test and characterize the behavior of the algorithm regarding error growth, spatial perturbation structure estimates and orthogonalization. The results indicate that the method can be used to generate error growing modes optimized for a certain rescaling interval, thus enabling the user to target specific scales of error growth. When an additional orthogonalization procedure is applied, the method is able to produce structures representing the error growth subspace spanned by the largest Lyapunov vectors.

Self-breeding: a new method to estimate local Lyapunov structures

Lorenz, E. N.: Predictability: a problem partly solved, in: Proceedings of the Seminar on Predictability, vol. 1, 1–18, ECMWF, Reading, UK, 1995.; Kalnay, E., Corazza, M., and Cai, M.: Are bred vectors the same as Lyapunov vectors?, in: AMS Symposium on Observations, Data Assimilation and Probabilistic Prediction, Orlando, FL, USA, 173–177, 2002.; Legras, B. and Vautard, R.: A guide to Liapunov vectors, in: Proceedings of the Seminar on Predictability, vol. 1, ECMWF, Reading, UK, 141–156, 1995.; Lorenz, E. N.: A deterministic non periodic flow, J. Atmos. Sci., 20, 130–141, 1963.; Berner, J., Shutts, G. J., Leutbecher, M., and Palmer, T. N.: A spectral stochastic kinetic energy backscatter scheme and its impact on flow-dependent predictability in the ECMWF ensemble prediction system, J. Atmos. Sci., 66, 603–626, 2009.; Bishop, C. H. and Toth, Z.: Ensemble transformation and adaptive observations, J. Atmos. Sci., 56, 1748–1765, 1999.; Buizza, R. and Palmer, T.: The singular-vector structure of the atmospheric global circulation, J. Atmos. Sci., 52, 1434–1456, 1995.; Carassi, A., Trevisan, A., and Francesco Uboldi, F.: Adaptive observations and assimilation in the unstable subspace by breeding on the data-assimilation system, Tellus A, 59, 101–113, doi:10.1002/qj.2115, 2007.; Corazza, M., Kalnay, E., Patil, D. J., Yang, S.-C., Morss, R., Cai, M., Szunyogh, I., Hunt, B. R., and Yorke, J. A.: Use of the breeding technique to estimate the structure of the analysis errors of the day, Nonlin. Processes Geophys., 10, 233–243, doi:10.5194/npg-10-233-2003, 2003.; Fujisaka, H.: Statistical dynamics generated by fluctuations of local Lyapunov exponents, Prog. Theor. Phys., 70, 1264–1275, 1983.; Keller, J. D., Hense, A., Kornblueh, L., and Rhodin, A.: On the Orthogonalization of Bred Vectors, Weather Forecast., 25, 1219–1234, 2010.; Keller, J. D., Kornblueh, L., Hense, A., and Rhodin, A.: Towards a GME ensemble forecasting system: Ensemble initialization using the breeding technique, Meteorol. Z., 17, 707–718, 2008.; Lorenz, E. N. and Emanuel, K. A.: Optimal sites for supplementary weather observations: simulation with a small model, J. Atmos. Sci., 55, 399–414, 1998.; Lyapunov, A. M.: The general problem of the stability of motion, Int. J. Control, 55, 531–773, 1992.; Magnusson, L., Leutbecher, M., and Källén, E.: Comparison between Singular Vectors and Breeding Vectors as Initial Perturbations for the ECMWF Ensemble Prediction System, Mon. Weather Rev., 4092–4104, doi:10.1175/2008MWR2498.1, 2008.; Oseledec, V. I.: Multiplicative ergodic theorem: characteristic Lyapunov exponents of dynamical systems, Trans. Moscow Math. Soc., 19, 197–231, 1968.; Pazó, D., López, J. M., and Rodríguez, M. A.: The geometric norm improves ensemble forecasting with the breeding method, Q. J. Roy. Meteorol. Soc., 139, 2021–2032, doi:10.1002/qj.2115, 2013.; Szunyogh, I., Kalnay, E., and Toth, Z.: A comparison of Lyapunov and optimal vectors in a low-resolution GCM, Tellus A, 49, 200–227, doi:10.1034/j.1600-0870.1997.00004.x, 1997.; Toth, Z. and Kalnay, E.: Ensemble forecasting at NMC: the generation of perturbations, B. Am. Meteorol. Soc., 74, 2317–2330, 1993.; Toth, Z. and Kalnay, E.: Ensemble forecasting at NCEP and the breeding method, Mon. Weather Rev., 125, 3297–3319, 1997.; von Storch, H. and Zwiers, F. W.: Statistical Analysis in Climate Research, Cambridge University Press, 1999.; Wolf, A., Swift, J. B., Swinney, H. L., and Vastano, J. A.: Determing Lyapunov exponents from a time series, Physica D, 16, 285–317, 1985.


Click To View

Additional Books

  • Role of Multifractal Analysis in Underst... (by )
  • The Transient Variation in the Complexes... (by )
  • Lagrangian Drifter Paths and Length Scal... (by )
  • Conditional Nonlinear Optimal Perturbati... (by )
  • Nonlinear Instability and Sensitivity of... (by )
  • Energy Considerations in Accelerating Ra... (by )
  • Earthquake Forecasting and Its Verificat... (by )
  • Correlations Between Climate Network and... (by )
  • Geometric and Topological Approaches to ... (by )
  • Representative Elementary Area for Multi... (by )
  • Nonlinear Multidimensional Scaling and V... (by )
  • Conditioning Model Output Statistics of ... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.