World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Features of Fluid Flows in Strongly Nonlinear Internal Solitary Waves : Volume 1, Issue 2 (18/12/2014)

By Semin, S.

Click here to view

Book Id: WPLBN0004020088
Format Type: PDF Article :
File Size: Pages 28
Reproduction Date: 2015

Title: Features of Fluid Flows in Strongly Nonlinear Internal Solitary Waves : Volume 1, Issue 2 (18/12/2014)  
Author: Semin, S.
Volume: Vol. 1, Issue 2
Language: English
Subject: Science, Nonlinear, Processes
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Talipova, T., Kurkina, O., Churaev, E., Kurkin, A., Semin, S., & Pelinovsky, E. (2014). Features of Fluid Flows in Strongly Nonlinear Internal Solitary Waves : Volume 1, Issue 2 (18/12/2014). Retrieved from

Description: Nizhny Novgorod State Technical University n.a. R. Alekseev, Nizhny Novgorod, Russia. The characteristics of highly nonlinear solitary internal waves (solitons) are calculated within the fully nonlinear numerical model of the Massachusetts Institute of Technology. The verification and adaptation of the model is based on the data from laboratory experiments. The present paper also compares the results of our calculations with the calculations performed in the framework of the fully nonlinear Bergen Ocean Model. The comparison of the computed soliton parameters with the predictions of the weakly nonlinear theory based on the Gardner equation is given. The occurrence of reverse flow in the bottom layer directly behind the soliton is confirmed in the numerical simulations. The trajectories of Lagrangian particles in the internal soliton on the surface, on the pycnocline and near the bottom are computed.

Features of fluid flows in strongly nonlinear internal solitary waves

Adcroft, A. J., Campin, J., Dutkiewicz, S., Evangelinos, C., Ferreira, D., Forget, G., Fox-Kemper, B., Heimbach, P., Hill, C., Hill, E., Hill, H., Jahn, O., Losch, M., Marshall, J. S., Maze, G., Menemenlis, D., and Molod, A.: MITgcm User Manual, MIT Department of EAPS, Boston, 464 pp., 2011.; Berntsen, J.: Users Guide for a modesplit σ-coordinate numerical ocean model, University of Bergen, Bergen, 51 pp., 2004.; Bogucki, D. J. and Redekopp, L. G.: A mechanism for sediment resuspension by internal solitary waves, Geophys. Res. Lett., 26, 1317–1320, 1999.; Apel, J. R., Ostrovsky, L. A., Stepanyants, Y. A., and Lynch, J. F.: Internal solitons in the ocean and their effect on underwater sound, J. Acoust. Soc. Am., 121, 695–722, 2007.; Cai, S., Long, X., and Gan, Z.: A method to estimate the forces exerted by internal solitons on cylindrical piles, Ocean Eng., 30, 673–689, 2003.; Cai, S., Wang, S., and Long, X.: A simple estimation of the force exerted by internal solitons on cylindrical piles, Ocean Eng., 33, 974–980, 2006.; Carr, M. and Davies, P. A.: The motion of an internal solitary wave of depression over a fixed bottom boundary in a shallow, two-layer fluid, Phys. Fluids, 18, 1–10, 2006.; Carr, M., Davies, P. A., and Shivaram, P.: Experimental evidence of internal solitary wave-induced global instability in shallow water benthic boundary layers, Phys. Fluids, 20, 1–12, 2008.; Chen, C.-Y., Hsu, J. R.-C., Chen, C.-W., Chen, H.-H., Kuo, C.-F., and Cheng, M.-H.: Generation of internal solitary wave by gravity collapse, J. Mar. Sci. Technol., 15, 1–7, 2007.; Cheng, M.-H., Hsu, J. R.-C., Chen, C.-Y., and Chen, C.-W.: Modelling the propagation of an internal solitary wave across double ridges and a shelf-slope, Environ. Fluid Mech., 9, 321–340, 2008.; Chin-Bing, S. A., Warn-Varnas, A., King, D. B., Hawkins, J., and Lamb, K. G.: Effects on acoustics caused by ocean solitons, Part B: Acoustics, Nonlinear Anal.-Theor., 71, 2194–2204, 2009.; Donaldson, M. R., Cooke, S. J., Patterson, D. A., and Macdonald, J. S.: Cold shock and fish, J. Fish Biol., 73, 1491–1530, 2008.; Fraser, N.: Surfing an oil rig, Energy Rev., 20, 4–8, 1999.; Grimshaw, R., Pelinovsky, E., and Poloukhina, O.: Higher-order Korteweg–de Vries models for internal solitary waves in a stratified shear flow with a free surface, Nonlin. Processes Geophys., 9, 221–235, doi:10.5194/npg-9-221-2002, 2002.; Grimshaw, R., Pelinovsky, E. N., Talipova, T. G., and Kurkin, A. A.: Simulation of the transformation of internal solitary waves on oceanic shelves, J. Phys. Oceanogr., 34, 2774–2791, 2004.; Grimshaw, R., Pelinovsky, E., and Talipova, T.: Modeling internal solitary waves in the coastal ocean, Surv. Geophys., 28, 273–298, 2007.; Grimshaw, R., Pelinovsky, E., Talipova, T., and Kurkina, O.: Internal solitary waves: propagation, deformation and disintegration, Nonlin. Processes Geophys., 17, 633–649, doi:10.5194/npg-17-633-2010, 2010.; Grue, J.: Generation, propagation, and breaking of internal solitary waves, Chaos, 15, 1–14, 2005.; Holloway, P., Pelinovsky, E., and Talipova, T.: A generalised Korteweg–de Vries model of internal tide transformation in the coastal zone, J. Geophys. Res., 104, 18333–18350, 1999.; Helfrich, K. R. and Melville, W. K.: Long nonlinear internal waves, Annu. Rev. Fluid Mech., 38, 395–425, 2006.; Lamb, K. G.: Particle transport by nonbreaking, solitary internal waves, J. Geophys. Res., 102, 18641–18660, 1997.; Jackson, C. R.: An atlas of internal solitary-like waves and their properties, prepared under contract with the Office of Naval Research Code 322PO, Contract N00014-03-C-0176, Global Ocean Associates, 6220 Jean Louise Way Alexandria VA., 2004.; Maderich, V., Talipova, T., Grimshaw, R., Pelinovsky, E., Choi, B. H., Brovchenko, I., Terletska, K., and Kim, D. C.: The transformation of an interfacial solitary wave of eleva


Click To View

Additional Books

  • Ion Acceleration by Parallel Propagating... (by )
  • Non-stationary Extreme Models and a Clim... (by )
  • Simulations of Nonlinear Harmonic Genera... (by )
  • A Nonlinear Method of Removing Harmonic ... (by )
  • Clifford Algebra-based Structure Filteri... (by )
  • Two- and Three-dimensional Computation o... (by )
  • Albedo Parametrization and Reversibility... (by )
  • Resurrecting Dead-water Phenomenon : Vol... (by )
  • Ensemble Kalman Filter Assimilation of T... (by )
  • Nucleation and Growth of Geological Faul... (by )
  • A Nonextensive Entropy Path to Probabili... (by )
  • Inverse Modelling of Atmospheric Tracers... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.