World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

A Method to Calculate Finite-time Lyapunov Exponents for Inertial Particles in Incompressible Flows : Volume 2, Issue 4 (14/07/2015)

By Garaboa, D.

Click here to view

Book Id: WPLBN0004020159
Format Type: PDF Article :
File Size: Pages 17
Reproduction Date: 2015

Title: A Method to Calculate Finite-time Lyapunov Exponents for Inertial Particles in Incompressible Flows : Volume 2, Issue 4 (14/07/2015)  
Author: Garaboa, D.
Volume: Vol. 2, Issue 4
Language: English
Subject: Science, Nonlinear, Processes
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Historic
Publication Date:
2015
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Garaboa, D., & Pérez-Muñuzuri, V. (2015). A Method to Calculate Finite-time Lyapunov Exponents for Inertial Particles in Incompressible Flows : Volume 2, Issue 4 (14/07/2015). Retrieved from http://hawaiilibrary.net/


Description
Description: Group of Nonlinear Physics, Faculty of Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain. The present study aims to improve the calculus of Finite-Time Lyapunov Exponents (iFTLEs) applied to describe the transport of inertial particles in a fluid flow. To this aim, the deformation tensor used to obtain the iFTLE is modified to take into account that the stretching rate between particles separated by a certain distance is influenced by the initial velocity of the particles. The advantages of this improvement, if compared to the standard method (Shadden et al., 2005), are discussed for the double-gyre flow and the meandering jet flow. The new method allows to identify the initial velocity that inertial particles must have in order to maximize their dispersion.

Summary
A method to calculate Finite-Time Lyapunov Exponents for inertial particles in incompressible flows

Excerpt
Babiano, A., Cartwright, H. H. E., Piro, O., and Provenzale, A. Dynamics of a small neutrally buoyant sphere in a fluid and targeting in Hamiltonian systems, Phys. Rev. Lett., 84, 5764–5767, 2000.; Bec, J.: Fractal clustering of inertial particles in random flows, Phys. Fluids 15, L81–L84, 2003.; Beron-Vera, F. J., Olascoaga, M. J., Haller, G., Farazmand, M., Triñanes, J., and Wang, Y.: Dissipative inertial transport patterns near coherent Lagrangian eddies in the ocean, submitted, 2014.; Boffetta, G., de Lillo, F., and. Gamba, A.: Large scale inhomogeneity of inertial particles in turbulent flows, Phys. Fluids, 16, L20–L24, 2004.; Bower, A. M.: A simple kinematic mechanism for mixing fluid parcels across a meandering jet, J. Phys. Oceanogr., 21, 173–180, 1991.; Bracco, A., Chavanis, P. H., Provenzale, A., and Spiegel, E. A.: Particle aggregation in a turbulent Keplerian flow, Phys. Fluids, 11, 2280–2287, 1999.; Cencini, M., Lacorata, G., Vulpiani, A., and Zambianchi, E.: Mixing in a meandering jet: A Markovian approximation, J. Phys. Oceanogr., 29, 2578–2594, 1999.; Eaton, J. K. and Fessler, J. R.: Preferential concentration of particles by turbulence, Int. J. Multiphas. Flow, 20, 169–209, 1994.; Falkovich, G., Fouxon, A., and Stepanov, M. G.: Acceleration of rain initiation by cloud turbulence, Nature, 419, 151–154, 2002.; Gatignol, R.: The Faxén formulae for a rigid particle in an unsteady non-uniform Stokes flow, J. Mec. Theor. Appl., 1, 143–160, 1983.; Haller, G. and Sapsis, T.: Where do inertial particles go in fluid flows?, Physica D, 237, 573–583, 2008.; Haszpra, T. and Tél, T.: Volcanic ash in the free atmosphere: a dynamical systems approach, J. Phys. Conf. Ser., 333, 012008, 2011.; Huhn, F., von Kameke, A., Allen-Perkins, S., Montero, P., Venancio, A., and Pérez-Muñuzuri, V.: Horizontal Lagrangian transport in a tidal driven estuary: transport barriers attached to prominent coastal boundaries, Cont. Shelf Res., 30–40, 1–13, 2012.; Lebreton, L. C. M., Greer, S. D., and Borrero, J. C.: Numerical modeling of floating debris in the worlds oceans, Mar. Pollut. Bull., 64, 653–661, 2012.; López, C., Zoltan, N., Hernández-García, E., and Haynes, P. H.: Chaotic advection of reacting substances: plankton dynamics on a meandering jet, Phys. Chem. Earth B, 26, 313–317, 2001.; Maxey, M. M. and Riley, J. J.: Equation of motion for a small rigid sphere in a nonuniform flow, Phys. Fluids, 26, 883–889, 1983.; Michaelides, E. E.: Hydrodynamic force and heat/mass transfer from particles, bubbles, and drops, J. Fluids Eng., 125, 209–238, 2003.; Peacock, T. and Dabiri, J. O.: Introduction to Focus Issue: Lagrangian coherent structures, Chaos, 20, 017501, 2010.; Peng, J. and Dabiri, J. O.: Transport of inertial particles by Lagrangian coherent structures: application to predator prey interaction in jellyfish feeding, J. Fluid Mech., 623, 75–84, 2009.; Pérez-Muñuzuri, V.: Clustering of inertial particles in compressible chaotic flows, Phys. Rev. E, 91, 052906, 2015.; Prants, S. V., Budyansky, M. V., Uleysky, M. Y., and Zaslavsky, G. M.: Chaotic mixing and transport in a meandering jet flow, Chaos, 16, 033117, 2006.; Samelson, R. M.: Fluid exchange across a meandering jet, J. Phys. Oceanogr., 22, 431–440, 1992.; Santamaria, F., Boffetta, G., Martins-Afonso, M., Mazzino, A., Onorato, M., and Pugliese, D.: Stokes drift for inertial particles transported by water waves, Eur. Phys. Lett., 102, 14003, 2013.; Sapsis, T. and Haller, G.: Inertial particle dynamics in a hurricane, J. Atmos. Sci., 66, 2481–2492, 2009.; Segurado, J., González, C., and Llorca, J.: A numerical investigation of the effect of particle clustering on the mechanical properties of composites, Acta Materi., 51, 2355–2369, 2003.; Shadden, S. C., Lekien, F., and Marsden, J.: Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows, Physica D, 212, 271–304, 2005.

 

Click To View

Additional Books


  • Identifying Sets of Acceptable Solutions... (by )
  • Electrostatic Shock Properties Inferred ... (by )
  • Hysteresis-controlled Instability Waves ... (by )
  • Toward an Understanding of the Nonlinear... (by )
  • Grid Resolution Dependence in the Recons... (by )
  • Synchronicity in Predictive Modelling: a... (by )
  • Venus Atmosphere Profile from a Maximum ... (by )
  • Multiscaling Analysis of High Resolution... (by )
  • Nonlinear Chaotic Model for Predicting S... (by )
  • Structure Function Analysis and Intermit... (by )
  • Statistical Analysis of Polychaete Popul... (by )
  • Aggregation and Sampling in Deterministi... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.