World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Impact of the Sea Surface Temperature Forcing on Hindcasts of Madden-julian Oscillation Events Using the Ecmwf Model : Volume 8, Issue 6 (11/12/2012)

By De Boisséson, E.

Click here to view

Book Id: WPLBN0004020559
Format Type: PDF Article :
File Size: Pages 14
Reproduction Date: 2015

Title: Impact of the Sea Surface Temperature Forcing on Hindcasts of Madden-julian Oscillation Events Using the Ecmwf Model : Volume 8, Issue 6 (11/12/2012)  
Author: De Boisséson, E.
Volume: Vol. 8, Issue 6
Language: English
Subject: Science, Ocean, Science
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Historic
Publication Date:
2012
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Boisséson, E. D., Mogensen, K., Balmaseda, M. A., & Vitart, F. (2012). Impact of the Sea Surface Temperature Forcing on Hindcasts of Madden-julian Oscillation Events Using the Ecmwf Model : Volume 8, Issue 6 (11/12/2012). Retrieved from http://hawaiilibrary.net/


Description
Description: European Centre for Medium Range Forecast, Shinfield Park, RG2 9AX, Reading, UK. This paper explores the sensitivity of hindcasts of the Madden Julian Oscillation (MJO) to the use of different sea surface temperture (SST) products as lower boundary conditions in the European Centre for Medium-range Weather Forecasts (ECMWF) atmospheric model. Three sets of monthly hindcast experiments are conducted, starting from initial conditions from the ERA interim reanalysis. First, as a reference, the atmosphere is forced by the SST used to produce ERA interim. In the second and third experiments, the SST is switched to the OSTIA (Operational Sea Surface Temperature and Sea-Ice Analysis) and the AVHRR-only (Advanced Very High Resolution Radiometer) reanalyses, respectively. Tests on the temporal resolution of the SST show that monthly fields are not optimal, while weekly and daily resolutions provide similar MJO scores. When using either OSTIA or AVHRR, the propagation of the MJO is degraded and the resulting scores are lower than in the reference experiment. Further experiments show that this loss of skill cannot be attributed to either the difference in mean state or temporal variability between the SST products. Additional diagnostics show that the phase relationship between either OSTIA or AVHRR SST and the MJO convection is distorted with respect to satellite observations and the ERA interim reanalysis. This distortion is expected to impact the MJO hindcasts, leading to a relative loss of forecast skill. A realistic representation of ocean–atmosphere interactions is thus needed for MJO hindcasts, but not all SST products – though accurate for other purposes – fulfill this requirement.

Summary
Impact of the sea surface temperature forcing on hindcasts of Madden-Julian Oscillation events using the ECMWF model

Excerpt
Cassou, C.: Intraseasonal interaction between the Madden-Julian Oscillation and the North Atlantic Oscillation, Nature, 455, 523–527, 2008.; Anderson, S. P., Weller, R. A., Lukas, R. B.: Surface buoyancy forcing and the mixed layer of the western Pacific warm pool: observations and 1D model results, J. Climate, 9, 3056–3085, 2.0.CO;2>doi:10.1175/1520-0442(1996)009<3056:SBFATM>2.0.CO;2, 1996.; Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Holm, E. V., Isaksen, L., Kallberg, P., Kohler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thepaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, 2011.; Donlon, C., Robinson, I., Casey, K., Vasquez, J., Armstrong, E., Gentemann, C., May, D., LeBorgne, P., Pioll, J., Barton, I., Beggs, H., Poulter, D. J. S., Merchant, C., Bingham, A., Heinz, S., Harris, A., Wick, G., Emery, B., Stuart-Menteth, A., Minnett, P., Evans, B., Llewellyn-Jones, D., Mutlow, C., Reynolds, R., Kawamura, H., and Rayner, N.: The Global Ocean Data Assimilation Experiment High-resolution Sea Surface Temperature Pilot, B. Am. Meteorol. Soc., 88, 1197–1213, 2007.; Liebmann, B. and Smith, C. A.: Description of a Complete (Interpolated) Outgoing Longwave Radiation Dataset, B. Am. Meteorol. Soc., 77, 1275–1277, 1996.; Donlon, C. J., Martin, M., Stark, J. D., Roberts-Jones, J., Fiedler, E., and Wimmer, W.: The Operational Sea Surface Temperature and Sea Ice analysis(OSTIA), Remote Sens. Environ., 116, 140–158, doi:10.1016/j.rse.2010.10.017, 2011.; Fiorino, M.: A multi-decadal daily sea surface temperature and sea ice concetration data set for the ERA-40 reanalysis, ERA-40 Project Report Series No 12, ECMWF: Reading, UK, 2004.; Gemmill, W., Katz, B., and Li, X.: Daily, Real-Time, Global Sea Surface Temperature – High Resolution Analysis: RTG SST HR, NCEP/EMC Office Note, pp. 39, 2007.; Hendon, H. H.: Air-sea interaction, in: Intraseasonal Variability in the Atmosphere-Ocean Climate System, edited by: Lau, W. K. M. and Waliser, D. E., Springer Praxis Books, 223–246, 2005.; Hendon, H. H. and Liebmann, B.: A composite study of onset of the Australian summer monsoon, J. Atmos. Sci., 47, 2227–2240, 1990.; Inness, P. M., Slingo, J. M., Guilyardi, E., and Cole, J.: Simulation of the Madden-Julian Oscillation in a Coupled General Circulation Model. Part II: The role of the basic state, J. Climate, 16, 365–382, 2003.; Kessler, K. S. and McPhaden, M.: Oceanic equatorial waves and the 1991–93 El Niño, J. Climate, 8, 1757–1774, 1995.; Kim, H. M., Hoyos, C. D., Webster, P. J., and Kang, I. S.: Sensitivity of MJO Simulation and Predictability to Sea Surface Temperature Variability, J. Climate, 21, 5304–5317, 2008.; Kim, H. M., Hoyos, C. D., Webster, P. J., and Kang, I. S.: Ocean-atmosphere coupling and the boreal winter MJO, Clim. Dynam., 35, 771–784, doi:10.1007/s00382-009-0612-x, 2010.; Krishnamurti, T. N., Oosterhof, D. K., and Metha, A. V.: Air-sea interaction on the timescale of 30–50 days, J. Atmos. Sci., 45, 1304–1322, 1988.; Klingaman, N. P., Woolnough, S. J., Weller, H., and Slingo, J. M.: The Importance of High-Frequency Sea Surface Temperature Variability to the Intraseasonal Oscillation of Indian Monsoon Rainfall, J. Climate, 21, 6119–6140, doi:10.1175/2008JCLI2329.1, 2008.; Lin, J. L., Kiladis, G

 

Click To View

Additional Books


  • Assessment of the Ecco2 Reanalysis on th... (by )
  • Changes in Ventilation of the Mediterran... (by )
  • The Influence of the Brazil and Malvinas... (by )
  • Overturning Cells in the Southern Ocean ... (by )
  • Automated Gas Bubble Imaging at Sea Floo... (by )
  • Tidal Generation of Large Sub-mesoscale ... (by )
  • Ekman Layers in the Southern Ocean: Spec... (by )
  • Frontal Structures in the West Spitsberg... (by )
  • Development of a New Expendable Probe fo... (by )
  • The Circulation of the Persian Gulf: a N... (by )
  • Equilibrator-based Measurements of Disso... (by )
  • The Effects of Biogeochemical Processes ... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.