World Library  

Add to Book Shelf
Flag as Inappropriate
Email this Book

Global Representation of Tropical Cyclone-induced Ocean Thermal Changes Using Argo Data – Part 2: Estimating Air–sea Heat Fluxes and Ocean Heat Content Changes : Volume 11, Issue 6 (12/12/2014)

By Cheng, L.

Click here to view

Book Id: WPLBN0004020824
Format Type: PDF Article :
File Size: Pages 31
Reproduction Date: 2015

Title: Global Representation of Tropical Cyclone-induced Ocean Thermal Changes Using Argo Data – Part 2: Estimating Air–sea Heat Fluxes and Ocean Heat Content Changes : Volume 11, Issue 6 (12/12/2014)  
Author: Cheng, L.
Volume: Vol. 11, Issue 6
Language: English
Subject: Science, Ocean, Science
Collections: Periodicals: Journal and Magazine Collection, Copernicus GmbH
Publication Date:
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications


APA MLA Chicago

Sriver, R. L., Zhu, J., & Cheng, L. (2014). Global Representation of Tropical Cyclone-induced Ocean Thermal Changes Using Argo Data – Part 2: Estimating Air–sea Heat Fluxes and Ocean Heat Content Changes : Volume 11, Issue 6 (12/12/2014). Retrieved from

Description: International Center for Climate and Environment Sciences, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China. We use Argo temperature data to examine changes in ocean heat content (OHC) and air–sea heat fluxes induced by tropical cyclones (TC)s on a global scale. A footprint technique that analyzes the vertical structure of cross-track thermal responses along all storm tracks during the period 2004–2012 is utilized (see part I). We find that TCs are responsible for 1.87 PW (11.05 W m−2 when averaging over the global ocean basin) of heat transfer annually from the global ocean to the atmosphere during storm passage (0–3 days) on a global scale. Of this total, 1.05 ± 0.20 PW (4.80 ± 0.85 W m−2) is caused by Tropical storms/Tropical depressions (TS/TD) and 0.82 ± 0.21 PW (6.25 ± 1.5 W m−2) is caused by hurricanes. Our findings indicate that ocean heat loss by TCs may be a substantial missing piece of the global ocean heat budget. Net changes in OHC after storm passage is estimated by analyzing the temperature anomalies during wake recovery following storm events (4–20 days after storm passage) relative to pre-storm conditions. Results indicate the global ocean experiences a 0.75 ± 0.25 PW (5.98 ± 2.1W m−2) net heat gain annually for hurricanes. In contrast, under TS/TD conditions, ocean experiences 0.41 ± 0.21 PW (1.90 ± 0.96 W m−2) net ocean heat loss, suggesting the overall oceanic thermal response is particularly sensitive to the intensity of the event. The net ocean heat uptake caused by all storms is 0.34 PW.

Global representation of tropical cyclone-induced ocean thermal changes using Argo data – Part 2: Estimating air–sea heat fluxes and ocean heat content changes

Bell, M. M., Montgomery, M. T., and Emanuel, K. A.: Air–sea enthalpy and momentum exchange at major hurricane wind speeds observed during CBLAST, J. Atmos. Sci., 69, 3197–3222, doi:10.1175/jas-d-11-0276.1, 2012.; Bender, M. A., Knutson, T. R., Tuleya, R. E., Sirutis, J. J., Vecchi, G. A., Garner, S. T., and Held, I. M.: Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes, Science, 327, 454–458, doi:10.1126/science.1180568, 2010.; Black, W. J. and Dickey, T. D.: Observations and analyses of upper ocean responses to tropical storms and hurricanes in the vicinity of Bermuda, J. Geophys. Res.-Oceans, 113, C08009, doi:10.1029/2007JC004358, 2008.; Braun, S. A.: High-resolution simulation of Hurricane Bonnie, 1998. Part II: Water budget, J. Atmos. Sci., 63, 43–64, 2006.; Cheng, L. and Zhu, J.: Artifacts in variations of ocean heat content induced by the observation system changes, Geophys. Res. Lett., 41, 7276–7283, doi:10.1002/2014GL061881, 2014.; D'Asaro, E. A.: The ocean boundary layer below Hurricane Dennis, J. Phys. Oceanogr., 33, 561–579, 2003.; Dare, R. A. and McBride, J. L.: Sea surface temperature response to tropical cyclones, Mon. Weather Rev., 139, 3798–3808, 2011.; Domingues, C. M., Church, J. A., White, N. J., Gleckler, P. J., Wijffels, S. E., Barker, P. M., and Dunn, J. R.: Improved estimates of upper-ocean warming and multi-decadal sea-level rise, Nature, 453, 1090–1096, 2008.; Emanuel, K.: Environmental factors affecting tropical cyclone power dissipation, J. Climate, 20, 5497–5509, doi:10.1175/2007jcli1571.1, 2007.; Emanuel, K. A.: The theory of hurricanes, Annu. Rev. Fluid Mech., 23, 179–196, 1991.; Emanuel, K. A.: Thermodynamic control of hurricane intensity, Nature, 401, 665–669, 1999.; Fedorov, A. V., Brierley, C. M., and Emanuel, K.: Tropical cyclones and permanent El Nino in the early Pliocene epoch, Nature, 463, 1066–1084, doi:10.1038/Nature08831, 2010.; Ginis, I.: Interaction of tropical cyclones with the ocean, in: Global Perspective of Tropical Cyclones, Chapter 5, edited by: Elsberry, R. L., Tech. Document WMO/TD 693, World Meteorological Organization, Geneva, Switzerland, 198–260, 1995.; Jansen, M. F., Ferrari, R., and Mooring, T. A.: Seasonal vs. permanent thermocline warming by tropical cyclones, Geophys. Res. Lett., 37, L03602, doi:10.1029/2009gl041808, 2010.; Josey, S. A., Kent, E. C., and Taylor, P. K.: New insights into the ocean heat budget closure problem from analysis of the SOC air–sea flux climatology, J. Climate, 12, 2856–2880, 1999.; Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., and Reynolds, R.: The NCEP/NCAR 40 year reanalysis project, B. Am. Meteorol. Soc., 77, 437–471, 1996.; Knutson, T. R., McBride, J. L., Chan, J., Emanuel, K., Holland, G., Landsea, C., Held, I., Kossin, J. P., Srivastava, A. K., and Sugi, M.: Tropical cyclones and climate change, Nat. Geosci., 3, 157–163, 2010.; Levitus, S., Antonov, J. I., Boyer, T. P., Locarnini, R. A., Garcia, H. E., and Mishonov, A. V.: Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems, Geophys. Res. Lett., 36, L07608, doi:10.1029/2008GL037155, 2009.; Levitus, S., Antonov, J. I., Boyer, T. P., Baranova, O. K., Garcia, H. E., Locarnini, R. A., Mishonov, A. V., Reagan, J. R., Seidov, D., Yarosh, E. S., and Zweng, M. M.: World ocean heat content and thermosteric sea level ch


Click To View

Additional Books

  • Results from the Implementation of the E... (by )
  • Mesoscale Variability in the Arabian Sea... (by )
  • On Contribution of Horizontal and Intra-... (by )
  • Validation of Foam Near-surface Ocean Cu... (by )
  • Coastal Sea Responses to Atmospheric For... (by )
  • A New 3-d-modelling Method to Extract Su... (by )
  • Tidal Generation of Large Sub-mesoscale ... (by )
  • A Discussion on the Use of X-band Sar Im... (by )
  • Seasonal Cycles of Surface Layer Salinit... (by )
  • High Frequency Variability of the Atlant... (by )
  • Qualified Temperature, Salinity and Diss... (by )
  • Trends in Coastal Upwelling Intensity Du... (by )
Scroll Left
Scroll Right


Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.