World Library  


Add to Book Shelf
Flag as Inappropriate
Email this Book

Influence of Numerical Schemes on Current-topography Interactions in 1/4° Global Ocean Simulations : Volume 4, Issue 3 (25/06/2007)

By Penduff, T.

Click here to view

Book Id: WPLBN0004021003
Format Type: PDF Article :
File Size: Pages 38
Reproduction Date: 2015

Title: Influence of Numerical Schemes on Current-topography Interactions in 1/4° Global Ocean Simulations : Volume 4, Issue 3 (25/06/2007)  
Author: Penduff, T.
Volume: Vol. 4, Issue 3
Language: English
Subject: Science, Ocean, Science
Collections: Periodicals: Journal and Magazine Collection (Contemporary), Copernicus GmbH
Historic
Publication Date:
2007
Publisher: Copernicus Gmbh, Göttingen, Germany
Member Page: Copernicus Publications

Citation

APA MLA Chicago

Madec, G., Barnier, B., Treguier, A., Sommer, J. L., Molines, J., & Penduff, T. (2007). Influence of Numerical Schemes on Current-topography Interactions in 1/4° Global Ocean Simulations : Volume 4, Issue 3 (25/06/2007). Retrieved from http://hawaiilibrary.net/


Description
Description: Laboratoire des Ecoulements Géophysiques et Industriels, Grenoble, France. The combined use of partial steps and of an energy-enstrophy conserving momentum advection scheme was shown by Barnier et al. (2006) to yield substantial improvements in the surface solution of the DRAKKAR ¼° global sea-ice/ocean model. The present study extends this investigation below the surface with a special focus on the Atlantic and reveals many improvements there as well: e.g. more realistic path, structure and transports of major currents (Gulf Stream, North Atlantic Current, Confluence region, Zapiola anticyclone), behavior of shedded rings, narrower subsurface boundary currents, stronger mean and eddy flows (MKE and EKE) at depth, beneficial enhancement of cyclonic (anticyclonic) flows around topographic depressions (mountains). Interestingly, adding a no-slip boundary condition to this improved model setup cancels most of these improvements, bringing back the biases diagnosed without the improved momentum advection scheme and partial steps (these biases are typical of other models at comparable or higher resolutions). This shows that current-topography interactions and full-depth eddy-admitting model solutions can be seriously deteriorated by near-bottom sidewall friction, either explicit or inherent to inadequate numerical schemes.

Summary
Influence of numerical schemes on current-topography interactions in 1/4° global ocean simulations

Excerpt
Adcroft, A. and Marshall, D.: How slippery are piecewise-constant coastlines in numerical ocean models?, Tellus Series A, 60, 95–108, doi = 10.1034/j.1600-0870.1998.00007., 1998.; Arakawa, A. and Lamb, V.: A potential enstrophy and energy conserving scheme for the shallow water equations, Mon. Wea. Rev., 109, 18–36, 1981.; Arhan, M., Treguier, A.-M., Bourlès, B., and Michel, S.: Diagnosing the annual cycle of the Equatorial Undercurrent in the Atlantic Ocean from a General Circulation Model, J. Phys. Oceanogr., 36, 1502–1522, 2006.; Barnier, B. and \mboxLe Provost, C.: Influence of bottom topography roughness on the jet and inertial recirculation of a mid-latitude gyre, Dyn. Atm. Oceans, 18, 29–65, 1993.; Barnier, B., Madec, G., Penduff, T., Molines, J.-M., Treguier, A.-M., le~Sommer, J., Beckmann, A., Biastoch, A., Böning, C., Dengg, J., Derval, C., Durand, E., Gulev, S., Remy, E., Talandier, C., Theetten, S., Maltrud, M., McClean, J., and de~Cuevas, B.: Impact of partial steps and momentum advection schemes in a global circulation model at eddy permitting resolution, Ocean Dynamics, doi:10.1007/s10236-006-0082-1, 2006.; Barnier, B., Brodeau, L., le~Sommer, J., Molines, J.-M., Penduff, T., Theetten, S., Treguier, A.-M., Madec, G., Biastoch, A., Böning, C., Dengg, J., Gulev, S., Bourdallé-Badie, R., Chanut, J., Garric, G., Alderson, S., Coward, A., de~Cuevas, B., New, A., Haines, K., Smith, G C., Drijfhout, S., Hazeleger, W., Severijns, C., and Myers, P G.: Eddy-permitting ocean circulation hindcasts of past decades, Clivar Exchanges, in press, 2007.; Beismann, J.-O., Käse, R H., and Lutjeharms, J R E.: On the influence of submarine ridges on translation and stability of Agulhas rings, J. Geophys. Res., 104, 7897–7906, \doi10.1029/1998JC900127, 1999.; Berliand, M. and Strokina, T.: Global distribution of the total amount of clouds,. Hydrometeorological, Tech. rep., Hydrometeorology Publishing House, Leningrad, (in Russian), 1980.; Blanke, B. and Delecluse, P.: Variability of the tropical atlantic ocean simulated by a general circulation model with two different mixed-layer physics, J. Phys. Oceanogr., 23, 1363–1388, 1993. %; %Chanut, J., Barnier, B., Large, W G., Debreu, L., Penduff, T., Molines, J.-M., % and Mathiot, P.: Mesoscale eddies in the Labrador Sea and their contribution % to convection and re-stratification, J. Phys. Oceanogr., in revision, 2007.; Chassignet, E., Arango, H., Dietrich, D., Ezer, T., Ghil, M., Haidvogel, D., Ma, C., Mehra, A., Paiva, A., and Sirkes, Z.: DAMEE-NAB: The base experiments, Dyn. Atmos. Oceans, 32, 155–183, 2000.; Colin de Verdière, A., Mercier, H., and Arhan, M.: Mesoscale variability from the western to the eastern Atlantic along 48° N, J. Phys. Oceanogr., 19, 1149–1170, 1989.; Holloway, G.: Representing topographic stress for large-scale ocean models, J. Phys. Oceanogr., 22, 1033–1046, 1992.; Coward, A. and de~Cuevas, B.: The OCCAM 66 level model: model description, physics, initial conditions, and external forcing, internal document~99, Southampton Oceanography Center, Southampton, UK, 2005.; De~Miranda, A., Barnier, B., and Dewar, W.: On the dynamics of the Zapiola anticyclone, J. Geophys. Res., 104, 21 137–21 149, 1999.; Dengg, J., Beckmann, A., and Gerdes, R.: The Gulf Stream separation problem, in: The Warmwatersphere of the North Atlantic Ocean, edited by Krauss, W., pp. 253–290, Gebrüder Borntraeger, Berlin, 1996.; Dengler, M., Schott, F., Eden, C., Brandt, P., Fisher, J., and Zantopp, R.: Break-up of the Atlantic deep western boundary current into eddies at 8° S, Nature, 3134, 2004.; Dewar, W.: Topographic and barotropic transport control by bottom friction, J. Mar. Res., 56, 295–328, 1998.; Ducet, N., Le~Traon, P., and Reverdin, G.: Global high-resolution mapping of ocean circulation from Topex/Poseidon and ERS-1 and -2, J. Geophys. Res., 105(C

 

Click To View

Additional Books


  • Observed and Simulated Estimates of the ... (by )
  • Circulation, Eddies, Oxygen, and Nutrien... (by )
  • North Atlantic 20Th Century Multidecadal... (by )
  • Nemo on the Shelf: Assessment of the Ibe... (by )
  • Atlantic Meridional Ocean Heat Transport... (by )
  • Near-surface Diurnal Warming Simulations... (by )
  • Technical Note: Remote Sensing of Sea Su... (by )
  • Atlantic Transport Variability at 25° N ... (by )
  • The Instability of Diffusive Convection ... (by )
  • Tropical Extra-tropical Thermocline Wate... (by )
  • How Does Ocean Ventilation Change Under ... (by )
  • In Situ Determination of the Remote Sens... (by )
Scroll Left
Scroll Right

 



Copyright © World Library Foundation. All rights reserved. eBooks from Hawaii eBook Library are sponsored by the World Library Foundation,
a 501c(4) Member's Support Non-Profit Organization, and is NOT affiliated with any governmental agency or department.